
Property-Based Testing via Proof Reconstruction

Work-in-progress

Alberto Momigliano
joint work with Rob Blanco and Dale Miller

LFMTP17

Sept. 8, 2017

Off the record

I After almost 20 years of formal verification with Twelf,
Isabelle/HOL, Coq, Abella, I’m a bit worn out

I I still find it a very demanding, often frustrating, day job.

I Especially when the theorem I’m trying to prove is, ehm,
wrong. I mean, almost right:

I statement is too strong/weak
I there are minor mistakes in the spec I’m reasoning about

I A failed proof attempt not the best way to debug those kind
of mistakes

I That’s why I’m inclined to give testing a try (and I’m in good
company!)

I Not any testing: property-based testing

Off the record

I After almost 20 years of formal verification with Twelf,
Isabelle/HOL, Coq, Abella, I’m a bit worn out

I I still find it a very demanding, often frustrating, day job.
I Especially when the theorem I’m trying to prove is, ehm,

wrong. I mean, almost right:

I statement is too strong/weak
I there are minor mistakes in the spec I’m reasoning about

I A failed proof attempt not the best way to debug those kind
of mistakes

I That’s why I’m inclined to give testing a try (and I’m in good
company!)

I Not any testing: property-based testing

Off the record

I After almost 20 years of formal verification with Twelf,
Isabelle/HOL, Coq, Abella, I’m a bit worn out

I I still find it a very demanding, often frustrating, day job.
I Especially when the theorem I’m trying to prove is, ehm,

wrong. I mean, almost right:
I statement is too strong/weak
I there are minor mistakes in the spec I’m reasoning about

I A failed proof attempt not the best way to debug those kind
of mistakes

I That’s why I’m inclined to give testing a try (and I’m in good
company!)

I Not any testing: property-based testing

Off the record

I After almost 20 years of formal verification with Twelf,
Isabelle/HOL, Coq, Abella, I’m a bit worn out

I I still find it a very demanding, often frustrating, day job.
I Especially when the theorem I’m trying to prove is, ehm,

wrong. I mean, almost right:
I statement is too strong/weak
I there are minor mistakes in the spec I’m reasoning about

I A failed proof attempt not the best way to debug those kind
of mistakes

I That’s why I’m inclined to give testing a try (and I’m in good
company!)

I Not any testing: property-based testing

PBT

I A light-weight validation approach merging two well known
ideas:

1. automatic generation of test data, against
2. executable program specifications.

I Brought together in QuickCheck (Claessen & Hughes ICFP
00) for Haskell

I The programmer specifies properties that functions should
satisfy

I QuickCheck tries to falsify the properties by trying a large
number of randomly generated cases.

QuickCheck’s Hello World! (FsCheck, actually)

let rec rev ls =

match ls with

| [] -> []

| x :: xs -> append (rev xs, [x])

let prop_revRevIsOrig (xs:int list) =

rev (rev xs) = xs;;

do Check.Quick prop_revRevIsOrig ;;

>> Ok, passed 100 tests.

let prop_revIsOrig (xs:int list) =

rev xs = xs

do Check.Quick prop_revIsOrig ;;

>> Falsifiable, after 3 tests (5 shrinks) (StdGen (518275965,...)):

[1; 0]

Not so fast/quick. . .

I Sparse pre-conditions:

ordered xs ==> ordered (insert x xs)

I Random lists not likely to be ordered . . . Obvious issue of
coverage

I QC’s answer:
I monitor the distribution
I write your own generator (here for ordered lists)
I Quis custodiet ipsos custodes?

I Generator code may overwhelm SUT. Think red-black trees.

I We need to shrink random cex to understand them. So, with
generators we need to implement (and trust) shrinkers

I Exhaustive generation up to a bound may miss corner cases

I Huge literature we skip, since. . .

From programming to mechanized meta-theory

I . . . We are interested in the specialized area of mechanized
meta-theory

I Yet, even here, verification still is
I lots of work (even if you’re not burned out)!
I unhelpful if system has a bug — only worthwhile if we already

“know” the system is correct, not in the design phase!

I (Partial) “model-checking” approach to the rescue:
I searches for counterexamples
I produces helpful counterexamples for incorrect systems
I unhelpfully diverges for correct systems
I little expertise required
I fully automatic, CPU-bound

I PBT for MMT means:
I Represent object system in a logical framework.
I Specify properties it should have.
I System searches (exhaustively/randomly) for counterexamples.
I Meanwhile, user can try a direct proof (or go to the pub)

From programming to mechanized meta-theory

I . . . We are interested in the specialized area of mechanized
meta-theory

I Yet, even here, verification still is
I lots of work (even if you’re not burned out)!
I unhelpful if system has a bug — only worthwhile if we already

“know” the system is correct, not in the design phase!

I (Partial) “model-checking” approach to the rescue:
I searches for counterexamples
I produces helpful counterexamples for incorrect systems
I unhelpfully diverges for correct systems
I little expertise required
I fully automatic, CPU-bound

I PBT for MMT means:
I Represent object system in a logical framework.
I Specify properties it should have.
I System searches (exhaustively/randomly) for counterexamples.
I Meanwhile, user can try a direct proof (or go to the pub)

From programming to mechanized meta-theory

I . . . We are interested in the specialized area of mechanized
meta-theory

I Yet, even here, verification still is
I lots of work (even if you’re not burned out)!
I unhelpful if system has a bug — only worthwhile if we already

“know” the system is correct, not in the design phase!

I (Partial) “model-checking” approach to the rescue:
I searches for counterexamples
I produces helpful counterexamples for incorrect systems
I unhelpfully diverges for correct systems
I little expertise required
I fully automatic, CPU-bound

I PBT for MMT means:
I Represent object system in a logical framework.
I Specify properties it should have.
I System searches (exhaustively/randomly) for counterexamples.
I Meanwhile, user can try a direct proof (or go to the pub)

Testing and proofs: friends or foes?

I Isn’t testing the very thing theorem proving want to replace?

I Oh, no: test a conjecture before attempting to prove it and/or
test a subgoal (a lemma) inside a proof

I The beauty (wrt general testing) is: you don’t have to invent
the specs, they’re exactly what you want to prove anyway.

I In fact, when Isabelle/HOL broke the ice adopting random
testing some 15 years ago, many followed suit:

I a la QC: Agda (04), PVS (06), Coq with QuickChick (15)
I exhaustive/smart generators (Isabelle/HOL (12))
I model finders (Nitpick, again in Isabelle/HOL (11))

I In fact, Pierce and co. are considering a version of Software
Foundations where proofs are completely replaced by testing!

Where is the logic (programming)?

I Given the functional origin of PBT, the emphasis is on
executable specs and this applies as well to PBT tools for PL
(meta)-theory (PLT-Redex, Spoofax).

I QuickChick and Nitpick handle some inductive definitions,
QC by deriving generators that satisfy essentially for logic
programs, for N. by reduction to SAT problems. . .

I An exception is αCheck, a PBT tool on top of αProlog, using
nominal Horn formulas to write specs and checks

I Given a spec N~a∀~X .A1 ∧ · · · ∧ An ⊃ A, a counterexample is a
ground substitution θ s.t. M |= θ(A1)∧ · · · ∧M |= θ(An) and
M 6|= θ(A) for model M of a (pure) nominal logic program.

I Two forms of negation: negation as failure and negation
elimination

I System searches exhaustively for counterexamples with a fixed
iterative deepening search strategy

What lies beneath

I In fact, functional approaches to PBT are rediscovering logic
programming:

I Unification/mode analysis in Isabelle’s smart generators and in
Coq’s QC

I (Randomized) backchaining in PLT-Redex

I What the last 25 years has taught us is that if we take a
proof-theoretic view of LP, good things start to happen

I And this now means focusing in a sequent calculus.

I In a nutshell, the (unsurprising) message of this paper:
the generate-and-test approach of PBT can be seen in terms
of focused sequent calculus proof where the positive phase
corresponds to generation and a single negative one to testing.

µMALL

I As the plan is to have a PBT tool for Abella, we have in
mind specs and checks in multiplicative additive linear logic
with (for the time being) least fixed points (Baelde & Miller)

I E.g. , the append predicate is:

app ≡µλAλxsλysλzs (xs = nl ∧+ ys = zs) ∨
∃x ′∃xs ′∃zs ′(xs = cns x ′ xs ′ ∧+ zs = cns x ′ zs ′ ∧+ A xs ′ ys zs ′)

I Usual polarization for LP: everything is positive — note, no
atoms.

I Searching for a cex is searching for a proof of a formula like
∃x : τ [P(x) ∧+ ¬Q(x)] is a single bipole — a positive phase
followed by a negative one.

I Correspond to the intuition that generation is hard, testing a
deterministic computation

A further step: FPC

I A flexible and general way to look at those proofs is as a proof
reconstruction problem in Miller’s Foundational Proof
Certificate framework

I FPC proposed as a means of defining proof structures used in
a range of different theorem provers

I If you’re not familiar with it, think a focused sequent calculus
augmented with predicates (clerks for the negative phase and
experts for the positive one) that produce and process
information to drive the checking/reconstruction of a proof.

I For PBT, we suggest a lightweight use of FPC as a way to
describe generators by fairly simple-minded experts.

FPC for the common man

I We defined certificates for families of proofs (the generation
phase) limited either by the number of inference rules that
they contain, by their size, or by both.

I They essentially translate into meta-interpreters that perform
bounded generation, not only of terms but of derivations.

I As a proof of concept, we implement this in λProlog and we
use NAF to implement negation — it’s a shortcut, but
theoretically, think fixed point and negation as A→⊥.

I We use the two-level approach: OL specs are encoded as
prog clauses and a check predicates will meta-interpret them
using the size/height certificates to guide the generation.

I Checking ∀x :elt,∀xs, ys:eltlist [rev xs ys → xs = ys] is

cexrev Xs Ys :-

check (qgen (qheight 3)) (is_eltlist Xs), % generate

solve (rev Xs Ys), not (Xs = Ys). % test

From algebraic to binding signatures

I The proof-theoretic view allows us to move seamlessly from
standard first-order terms to higher-order LP with λ-tree
syntax, which was the whole selling point.

I No current tool supports proofs and disproofs with binders

I This means accommodating the ∇-quantifier
I Here we take another shortcut and restrict to Horn specs (no

hypothetical encodings).
I . . . but we have experimented with kernels for logics such LG

as well

I It’s well known that in this setting nabla can be soundly
encoded by λProlog’s universal quantification

Case study

I A simply-typed λ-calculus with constructors for integers and
lists, following a PLT-Redex benchmark:

Types A,B ::= int | ilist | A→ B
Terms M ::= x | λx :A. M | M1 M2 | c | err
Constants c ::= n | plus | nil | cons | hd | tl

I Encode it in the usual two-level approach, but with explicit
contexts (to stay Horn).

I Insert a bunch of mutations in the static and/or dynamic
semantics

I Try to catch them as a violation of type safety

Measurements

bug check αC λP Description/Rating

1 preservation 0.3 0.05 range of function in app rule
progress 0.1 0.02 matched to the arg. (S)

2 progress 0.27 0.06 value (cons v) v omitted (M)
3 preservation 0.04 0.01 order of types swapped

progress 0.1 0.04 in function pos of app (S)
4 progress t.o. 207.3 the type of cons return int (S)
5 preservation t.o. 0.67 tail reduction returns the head (S)
6 progress 24.8 0.4 hd reduction on part. applied cons (M)
7 progress 1.04 0.1 no eval for argument of app (M)
8 preservation 0.02 0.01 lookup always returns int (U)
9 preservation 0.1 0.02 vars do not match in lookup (S)

Our implementation using size as a bound vs. αProlog

Conclusions

I PBT is now most major proof assistants to complement
theorem proving with a preliminary phase of conjecture
testing.

I We have shown as the FPC framework can be instantiated to
give a proof-theoretic reconstruction of PBT.

I We have seen as this extends as expected to binding signature
to perform meta-theory model-checking.

I We have presented a proof-of-concept implementation in
λProlog using NAF, which, in its naivety, is already effective.

Future Work: more case studies

I Search for deeper known bugs
I “value” restriction in ML with references and let-polymorphous
I intersection types with computational effects

I Search for unknown bugs in (λ)Prolog code “in the wild” (e.g.
Hannan’s “Extended natural semantics” or even old
CENTAUR stuff)

I Tackle coinductive specs, to look for
I Two process that are similar but not bisimilar
I λ-terms that are ground- but not applicative-bisimilar. . .

Tabling could prove handy.

I Implement random generators e.g. with an unfold expert
that may flip a coin when selecting a clause to backchain on.

Future Work: architecture

I Integrate with Abella’s workflow, both at the top-level
(disproving conjectures) and inside a proof attempt
(disproving subgoals).

I Long-ish time view: a mini Sledgehammer protocol for Abella,
by which conjectures are under the hood PB-tested: if no cex
reported proof outlines are used to try and conclude the proof.

I Keeping in mind that Abella’s implementation not
immediately meant for search

I Previous attempts with FPC kernels with primitive ∇ written
as inductive definition in Abella proper seems too slow for
generation

The blame game

I Suppose your PBT tool reports a cex. Now what? You’re not
getting payed just for finding faults. . .

I Staring at a potentially huge spec even with a cex in hand not
the best way to go. Two issues:

1. Soundness: your spec is plain wrong and returns an answer
that should not hold

2. Completeness: you’ve forgotten to encode some info and some
answers are not produced.

I FPC to the rescue (possibly):

1. Use certificate distillation to restrict to a more manageable set
of suspects

2. Use abductive experts to collect sets of assumptions that
should hold but don’t

Thanks!

	Part 1: Motivation

