
Mechanising the Meta-Theory of Session Types in
Rocq: a Tutorial

Marco Carbone[0000−0001−9479−2632] and Alberto Momigliano[0000−0003−0942−4777]

Abstract This tutorial presents a mechanization of the meta-theory of binary session
types in the Rocq proof assistant, with the goal of making the formalization of concur-
rent calculi more accessible to researchers and practitioners. We focus on two central
difficulties: the treatment of names and binders inherited from the π-calculus, and the
enforcement of a linear type discipline. To address the latter, we adopt the linearity
predicate, which separates typing from resource management and integrates smoothly
with de Bruijn indices, which is the way we handle name and binders. The tutorial
is aimed at readers familiar with session types and Rocq, and is intended as a guided
companion to the second chapter of Gay & Vasconcelos’ recent book, highlighting the
design choices and proof principles that arise when carrying out machine-checked de-
velopments of concurrency theory. The Rocq code is available in full, and the approach
should carry over to other mainstream assistants.

1 Introduction

While the use of proof assistants to verify programming language theory has a well-
established history [7], the mechanization of formal models for concurrent and dis-
tributed languages is less developed. Concurrent calculi are particularly subtle; for in-
stance, it took several years before an error in the type preservation proof of the original
session subtyping paper [4] was discovered and subsequently corrected [5], underscor-
ing the importance of machine-checked proofs. Although some results in concurrent
formalisms have already been mechanized, we believe that the process remains unnec-
essarily difficult to approach. This is precisely the motivation behind the “concurrent

Marco Carbone
IT University of Copenhagen, Copenhagen, Denmark e-mail: maca@itu.dk

Alberto Momigliano
DI, Università degli Studi di Milano, Milano, Italy e-mail: momigliano@di.unimi.it

1

maca@itu.dk
momigliano@di.unimi.it

2 Marco Carbone and Alberto Momigliano

calculi formalization benchmark” [2], which aims to promote the same spirit of collab-
oration and progress inspired by the original POPLMark challenge.

A particularly illustrative case study—also the focus of [2]’s first benchmark—is
the meta-theory of binary session types [6], specifically their soundness with respect to
standard reduction semantics. This area presents two interrelated challenges:

1. the formalization of free and bound names and their interaction under communica-
tion, inherited from the π-calculus—a longstanding challenge in mechanization [9];

2. the enforcement of a linear type discipline, which introduces non-trivial constraints
on context management; we discuss its specific difficulties in Section 5.

To address the second aspect, we adopt the recently rediscovered linearity predi-
cate [13] (LP for short), which cleanly separates typing rules from the management of
linear resources. A crucial side effect is that LP avoids interfering with the traditional
encoding of binders in mainstream proof assistants—specifically, the use of de Bruijn
indices.

The main goal of this tutorial is to provide an understanding of the formal machin-
ery involved in mechanizing the meta-theory of binary session types within a Rocq-
like proof assistant. We concentrate on fundamental issues such as name management
and the typing discipline, with a particular emphasis on the interplay between typ-
ing derivations and linearity assumptions. Rather than offering a general-purpose proof
framework, this tutorial aims to clarify the design choices and theoretical principles un-
derlying the implementation. While we do not claim significant novelty relative to the
state of the art, we do introduce a few technical devices—such as injective renamings
and the non-monotonicity of typing contexts—that have not previously been explored
in this context.

Target Audience: This tutorial is intended for readers already familiar with:

• the motivation and mathematical development of binary session types,
• basic experience with Rocq, roughly at the level of the second volume of Software

Foundations [11],
• a working understanding of de Bruijn indices, as introduced e.g. in [10].

We do not assume prior knowledge of advanced techniques for managing binders or
of linearity in mechanised proofs. While our formalization mostly uses Ssreflect [8],
this is purely for convenience; the development could be carried out in plain Rocq.
We have not attempted to optimise the proofs—either through automation or through
custom tactics. The material should be accessible to users of other proof assistants, with
one caveat: our adoption of well-scoped de Bruijn indices relies on dependent types.

As far as session types are concerned, our treatment follows the recent book by Gay
and Vasconcelos [6], to which we refer for both the underlying motivations and the
technical details that we take as known. As we shall see, somewhat to our surprise,
the mechanization process has led us to introduce slight modifications to the system
presented in the book—changes that, in our view, improve it. Such refinements are a
welcome outcome of formalization efforts. We leave to future work the rest of the book,
in particular handling of unrestricted channels, recursion and subtyping and possible
future surprises included.

The Rocq code discussed in this paper can be found in its entirety at this address:

https://rocq-prover.org

Mechanising the Meta-Theory of Session Types in Rocq: a Tutorial 3

https://github.com/carbonem/rocq-session-types-tutorial

In the next sections, the reader will find code snippets that are taken verbatim from the
repository and can also click on the icon () to directly reach the encoding of selected
definitions or statements.

2 Syntax

The syntax of our (finitary) process calculus is given by the following grammar:

P,Q ::= 000 | x!.P | x?.P | x!y.P | x?(y).P | P ∥ Q | (νννxy) P

We assume a countable set of variables (also called names) for channel endpoints,
denoted by x, y, etc. Our syntax includes standard process constructs such as paral-
lel composition, output, and input. As in Gay and Vasconcelos [6], we have separate
processes for closing a channel (wait and close). Following Vasconcelos’s idea [15],
channel restriction (νννxy) P connects two endpoints to form a communication channel.
Input and restriction are binders: in particular y is bound in P in x?(y).P while x and y
are bound in P in (νννxy) P, yielding the usual definition of free and bound variable.

2.1 Representation in Rocq

Names, Binders, and Processes. To implement this syntax in a proof assistant such
as Rocq, we must make a fundamental design decision: how to represent names and
binders. In this tutorial, we adopt (well-scoped) De Bruijn indices. De Bruijn indices
replace variable names with numeric indices that count the number of binders between
a variable occurrence and its binder. This avoids issues related to variable shadowing
and α-conversion, at the cost of having to update these indices when communication
occurs.

For example, consider the process x?(y). y!.P, where name y is bound in y!.P. In the
de Bruijn representation, the term would be encoded as x?(). 0!.P′, where y has become
the index 0, referring to the most recently bound variable and P′ is the encoding of P.
Any other occurrences of variables in P′ that are bound outside this scope must be
incremented (shifted) to account for the new binding. This explicit shifting ensures
that each index correctly refers to its intended binder, preserving the intended scoping
of all variables.

This representation trades one difficulty for another: substitution reduces to replac-
ing an index, but one must carefully manage shifts whenever new binders are intro-
duced or terms are moved under additional binders.

The idea of well-scoped de Bruijn syntax is to associate each syntactic object with
the size of its surrounding context. Concretely, the type of processes, written prock,
carries an upper bound k on the admissible free names. This principle extends to richer

https://github.com/carbonem/rocq-session-types-tutorial
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/

4 Marco Carbone and Alberto Momigliano

signatures, yielding an algebra of terms and substitutions indexed by scope. In such a
representation, Rocq’s type checker automatically rejects forgotten “shifts”, since each
constructor explicitly specifies how the scope changes. Closed processes, for instance,
inhabit the type proc0.

We have used the Autosubst2 library to automatically generate from a signature
of our calculus boilerplate code for de Bruijn syntax, including renaming and substi-
tution. While this tool is convenient, its use is not essential for understanding the key
ideas presented here. Below, we highlight the core concepts needed for the remainder
of the tutorial, independently of Autosubst2.

In a well-scoped representation, processes have this BNF:

c ∈ chk ::= x (x ∈ fin k)

P,Q ∈ prock ::= Pk ∥ Qk | ν .Pk+2 | xk ?().Pk+1 | xk!yk.Pk | xk!.Pk | xk?.Pk | 000

where fin is the finite type of indices with at most k elements (). For example, fin 3

has three elements: 0, 1, and 2. In Autosubst2, it is built as the n-fold iteration of the
Option type, although other representation as inductive definitions or dependent sums
are also possible. Some elements are:

Definition var_zero {n : nat} : fin n.+1 := None.
Definition var_one {n : nat} : fin n.+2 := Some None.

The typical use of var_zero is as a freshly bound variable.
Well-scopedness is enforced through dependent types: a process of type prock is

guaranteed to only reference endpoints in the range fin k, thus preventing dangling
references by construction.

The syntax of processes and channels is defined inductively via two key types:

• ch n (): endpoints, represented using de Bruijn indices with scope n: these are just
coercions var_ch from elements of the fin type;1

• proc n (): processes, similarly well-scoped.

In the following we will heavily use Rocq’s Notation mechanism to pretty print
most of the informal judgments, some of those notations being auto-generated by
Autosubst2.
Substitutions The (simultaneous) substitution operation is central to reasoning about
process behavior. In our setting, a substitution on endpoints is a function of type
fin n -> ch m. This means that for each index in the context, the substitution pro-
vides a replacement endpoint, possibly with a different scope. We can think of it as a
stream of endpoints with length n.

We identify three elementary operations:

identity idren: fin k -> fin k ()
shifting shift: fin k -> fin k.+1 ()
extension scons: X -> (fin n -> X) -> fin n.+1 -> X ()

1 These coercions are introduced by Autosubst2, but could be omitted by working directly with
elements of fin, since our calculus has only a single sort of variables.

https://github.com/uds-psl/autosubst-ocaml
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/fintype.v#L22
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/syntax.v#L7
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/syntax.v#L191
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/fintype.v#L35
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/fintype.v#L42
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/fintype.v#L48

Mechanising the Meta-Theory of Session Types in Rocq: a Tutorial 5

In the extension operation we will instantiate X as ch k: hence we “cons” a new element
of type ch k to the stream of type fin n -> ch k at its first position var_zero.

Process substitution, denoted by ⟨σ⟩P, is directly defined by structural recursion.
This is notably different from the λ -calculus where the definition has to go through
renaming to be accepted as total [1]. We first need to define a substitution function
for endpoints, via subst_ch : (fin m -> ch n) -> ch m -> ch m (notation x[σ]),
which simply applies the function under the coercion ().

A typical use of such substitution over endpoints is when descending into a binder.
Suppose we have a judgment J over an endpoint and process. Then, the restriction case
will have this shape:

Inductive J {n : nat} : ch n→ proc n→ Prop :=
| JRes : forall (x : ch n) (P : proc n.+2),
J (x[fun i⇒ var_ch (shift (shift i))]) P→ J x ((ν) P)
...

Above, the validity of the predicate depends on the subterm P, but we must shift x by
two because of the binder in the initial term.

Finally, process substitution is defined as follows in our mechanization ():

Fixpoint subst_proc {m : nat} {n : nat}
(σ : fin m -> ch n) (p : proc m) : proc n :=
match p with
| /0 => /0
| p0 ? . p1 => p0 [σ] ? . subst_proc m n σ p1
| p0 ! . p1 => p0 [σ] ! . subst_proc m n σ p1
| (ν) p0 => (ν) subst_proc m.+2 n.+2 ↑(__ch ↑(__ch σ)) p0
| p0 || p1 => subst_proc m n σ p0 || subst_proc m n σ p1
| p0 ? (_).p1 => p0 [σ] ? (_).subst_proc m.+1 n.+1 ↑(__ch σ) p1
| p0 ! p1 . s2 => p0 [σ] ! p1 [σ] . subst_proc m n σ s2
end

Listing 1 Processes substitution

where ↑__ch is notation for a function

up_ch_ch: (fin m→ ch n) → fin n.+1 → ch n.+1

that shifts a substitution ().

3 Operational Semantics

The dynamics of processes are described through a small step operational semantics.
We base our mechanization on the one given by Gay and Vasconcelos [6], which we
report in Fig. 1. As usual, this definition uses a structural congruence relation that
equates processes deemed to be indistinguishable. Gay and Vasconcelos define struc-
tural congruence as the smallest congruence relation that satisfies the axioms in the top
part of Fig. 1. Then, reduction is defined in the bottom part.

https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/syntax.v#L10
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/syntax.v#L254
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/syntax.v#L17

6 Marco Carbone and Alberto Momigliano

C-COMM

P ∥ Q ≡ Q ∥ P

C-ASSOC

(P ∥ Q) ∥ R ≡ P ∥ (Q ∥ R)

C-NEUT

P ∥ 000 ≡ P

C-SCOPE

(νννxy) P ∥ Q ≡ (νννxy) (P ∥ Q)

C-SWAPC

(νννxy) P ≡ (νννyx) P

C-SWAPB

(νννx1y1) (νννx2y2) P ≡ (νννx2y2) (νννx1y1) P
. .

R-COM

(νννxy) (x!z.P ∥ y?(w).Q)→ (νννxy) (P ∥ Q{z/w})

R-CLOSE

(νννxy) (x?.P ∥ y!.Q)→ P ∥ Q

R-RES
P → Q

(νννxy) P → (νννxy) Q

R-PAR
P → Q

P ∥ R → Q ∥ R

R-STRUCT
P ≡ P′ P′ → Q′ Q ≡ Q′

P → Q

Fig. 1 Structural Congruence and Reduction [6]

While any mathematician would understand what we mean by “the smallest con-
gruence relation closed under given rules” — as indeed defined in [15] — this is too
hand-wavy for a mechanization. One way to make it more formal is to introduce the
notion of “process contexts”, as in [12]: these are defined as in the PL literature since
Felleisen and Hieb’s work from the BNF of processed adding a “hole”; this hole, when
filled, specifies the location where a particular congruence rule will be applied. This
approach has its merits, as it separates the action itself from the position where the
action takes place. It is also modular, since extending the language will only require to
extend the syntax of processes and contexts, rather than adding more rules to the notion
of equivalence. However, it is rather complicated to implement: not only it duplicates
the syntax of processes and all its related notions, but contexts have their own pecu-
liar substitution operation that does not respect α-conversion: free names can become
bound when filling a hole.

We therefore recommend formalizing closure compatibility within structural con-
gruence by explicitly adding the equivalence relation conditions alongside a compati-
bility condition for each construct, as suggested in [6]. This makes some proofs longer
(e.g., type preservation of congruence), but these extra cases are not the difficult ones.
A caveat is that, when inducting on such a judgment, certain theorems must be stated
as “iff” so that the inductive hypothesis applies symmetrically — for an example, see
Lemma 4.2. Finally, note that the de Bruijn discipline resolves ambiguities arising from
the Barendregt convention, which was previously used to omit some conditions on
bound names in the congruence rule, e.g., C-SCOPE.

An excerpt of our encoding of congruence can be found here:

Mechanising the Meta-Theory of Session Types in Rocq: a Tutorial 7

Inductive struct_eq {n:nat} : proc n -> proc n -> Prop :=
SC_Par_Com : forall P Q : proc n,

P || Q ∼= Q || P
| SC_Par_Assoc : forall P Q R : proc n,

P || Q || R ∼= P || (Q || R)
| SC_Par_Inact : forall P : proc n,

P || /0 ∼= P
| SC_Res_Scope : forall (P : proc n.+2) (Q : proc n),

(ν) P || Q ∼= (ν) (P || shift_two_up Q)
| SC_Res_SwapC : forall P : proc n.+2,

(ν) P ∼= (ν) (< swap_ch var_zero var_one >) P
| SC_Res_SwapB : forall P : proc n.+4,

(ν) (ν) P ∼= (ν) (ν) (< swap_ch var_one var_three >)
((< swap_ch var_zero var_two >) P)

Listing 2 Selected congruence rules ()

The monoidal cases are immediate. In the scope extrusion case, we use the function
shift_two_up : : proc m -> proc m.+2 () to adjust the scope of Q. Similarly, in
the swap rules the function swap_ch () is mapped over Q to exchange the appropriate
indexes. Note that its signature requires decidability of the fin type.

The encoding of reduction looks rather straightforward, save for one non trivial
technical issue brought in by rule R-CLOSE: this rule will gladly produce processes
that make little sense. For example, if x occurs freely in P, an application of the rule
will result in a term with a (new) free variable, since the restriction is deleted. This is
exactly where the type system steps in, ruling out such a process as ill-typed; in fact, it
is a theorem that free names of a well-typed process are preserved under reduction.

While it may be defensible on philosophical grounds to allow such a rule in an
informal development, the rule is incompatible with a well-scoped implementation,
where the context size must remain invariant under reduction. The same issue was
observed in [17] and more radically addressed by forbidding free occurrences of x and
y in P and Q, respectively. However, our well-scoped implementation would require
complex adjustments to reconcile this extra condition with the context-size checking
that is automatically enforced by Rocq.

We therefore modify R-CLOSE so that the restriction is preserved in the reductum
and therefore preserves also the set of free names. To compensate, we add a further
congruence rule allowing us to remove restrictions over inactive processes:

| SC_Res_Inact : (ν) /0 ∼= /0

The encoding of the rest of the rules is unsurprising: note that in the last constructor
x.. is a notation for scons x ids, which is the Autosubst2 way to encode endpoint
substitution in rule R-COM. In the mathematical notation in Fig. 1, the substitution
Q{z/w} is the traditional way of denoting ⟨·{z/w}⟩Q where {z/w} is the identity sub-
stitution on all inputs except for w which is instead mapped to z.

https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/semantics.v#L93
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/semantics.v#L84
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/semantics.v#L87

8 Marco Carbone and Alberto Momigliano

Inductive reduce {n:nat} : proc n -> proc n -> Prop :=
| R_Res : forall P Q : proc n.+2,

P ⇛ Q -> (ν) P ⇛ (ν) Q
| R_Par : forall P Q R : proc n,

P ⇛ Q -> P || R ⇛ Q || R
| R_Struct : forall P P’ Q Q’ : proc n,

P ∼= P’ -> P’ ⇛ Q’ -> Q’ ∼= Q -> P ⇛ Q
| R_Close : forall P Q : proc n.+2,

(ν) (1 ! . P || 0 ? . Q) ⇛ ((ν) (P || Q))
| R_Com : forall (x : ch n.+2)(P : proc n.+2) (Q : proc n.+3),

(ν) (1 ! x . P || 0 ? (_).Q) ⇛ (ν) (P || (< x.. >) Q)

Listing 3 Reduction rules ()

As a roadmap for the following sections, the reader should keep in mind that we
will need to establish preservation under both congruence and reduction for:

1. free names,
2. the linearity predicate, and
3. type derivations.

This in turn requires proving the corresponding substitution lemmas, as well as their
inverses (arising from the symmetry built into the definition of congruence). All these
proofs will be carried out by rule induction on the definitions of congruence and re-
duction, combined with inversion or case analysis on the judgments being preserved.
Finally, since reduction is defined in terms of congruence, any preservation result for
reduction will depend on the corresponding result for congruence.

4 Free Names

One of the main hassles in a de Bruijn encoding of a π-calculus is the handling of free
names. While it is straightforward to implement a function that collects the set of free
names of a given process, we then have to prove a variety of trivial but annoying results
about this datatype. We instead use the predicate (actually implemented as a function)
free_in : ch n -> proc n -> Prop () that abstracts from the representation of the
collection of those names by just checking if a name does occur freely in a process. This
predicate will be crucial in the definition of the linearity predicates.

Free names have an interesting relationship with substitutions, in order to guarantee
properties such as linearity. Recall that a substitution is a function from indexes to end-
points. While those are arbitrary in Autosubst2, we need them to satisfy injectivity.
The latter, however, is a strong property since it must hold over the entire (possibly
infinite) domain of the function. As we explore in more detail later, communication in
well-typed process is not fully injective. To address this, we introduce a weaker notion,
dubbed injectiveNS, where we check injectivity from the perspective of a particular
name n, and only with respect to a set S of free names. Since we have adopted an
implicit definition of free names, one of the argument is the process P.

https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/semantics.v#L154
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/free_names.v#L7

Mechanising the Meta-Theory of Session Types in Rocq: a Tutorial 9

Definition 4.1 () The predicate injectiveNS(n,P,σ) holds if and only if, for every j,
whenever free in(j,P) and σ(n) = σ(j), then n = j.

This definition is particularly useful as it allows us to verify whether a specific name
maintains linearity relative to the free names of a process. Note also that adopting in-
jectivity properties of substitutions is quite common in the π-calculus — see Sangiorgi
and Walker [12] (page 48) stronger notion of injectivity over a set X .

Our definition of injectivity satisfies some (low level) results that we leave to the
accompanying code, including:

• inversion principles over the process constructors;
• the fact that swapping substitutions are indeed injective.

Armed with this definition, we now tackle the three preservation results with respect
to free names. While formal proofs can be found in the github repository, we give an
intuition of the main aspects of each proof.

Lemma 4.1 (Preservation of free names under substitution)

1. Assume that injectiveNS(i,P,σ) holds. If free in(i[σ],⟨σ⟩P) then free in(i,P) ().
2. If free in(i,P) then free in(i[σ],⟨σ⟩P) ().

Proof Intuition. TODO: ⊓⊔

Note that the first direction of the lemma requires injectiveNS(i,P,σ). As a coun-
terexample, given the process P = x!.Q ∥ x?.R such that ¬free in(y,P), any substitution
that maps both x and y to z — for which injectiveNS does not hold — would not satisfy
the lemma. In fact, y[σ] is a free name in ⟨σ⟩P, while y is not free in P.

Structural congruence preserves the free names of a process:

Lemma 4.2 (Preservation of free names under congruence ()) Assume that P ≡ Q
holds: free in(x,P) iff free in(x,Q).

Proof Intuition. The proof proceeds by structural induction on P ≡ Q. Because of
scope extrusion and shifting, in rules such as C-SCOPE, C-SWAPC, and C-SWAPB,
we use both parts of Lemma 4.1. Note that all substitutions used in structural congru-
ence are injective, therefore injectiveNS always holds. ⊓⊔

We conclude this part with the following result that states that, under reduction, no
new free name is generated:

Lemma 4.3 (Preservation of free names under reduction ()) If P→Q and free in(x,Q),
then, free in(x,P).

Proof Intuition. By structural induction on the derivation of P → Q. The R-
STRUCT case relies on Lemma 4.2. The most interesting case is R-COM, where
(νννxy) (x!z.P ∥ y?(w).Q)→ (νννxy) (P ∥ Q{z/w}). This case uses the first part of
Lemma 4.1. The difficulty arises in the subcase where x is free in Q. If x coincides with
the communicated endpoint z, then x must be present in the redex, since it is the object
of the output. Otherwise, there is no clash: we are checking injectiveNS(x,P,{z/w}),
which holds because x and z are distinct. ⊓⊔

https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/free_names.v#L173
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/free_names.v#L434
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/free_names.v#L449
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/free_names.v#L502
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/free_names.v#L548

10 Marco Carbone and Alberto Momigliano

5 Towards Session Types

The main challenge in mechanizing session types lies in handling linearity within the
type system. In session-typed languages, linearity of an endpoint ensures the absence
of races: no two processes can run in parallel while attempting to communicate (input
or output) over the same endpoint. This contrasts with the linear π-calculus, where
a linear channel is restricted to a single use—that is, it must be used and cannot be
duplicated.

Most formalizations of linearity in proof assistants—whether of type-theoretic
frameworks, sequent calculi, or operational semantics—have approached resource
management at the data-type level: this is typically done by modeling contexts as lists
or multisets and developing libraries of theorems (often in the thousands lines of code)
to manage their structural properties; for a guided tour of the literature, please see [17].

The central idea of our formalization is to use the linearity predicate in the typing
rules in lieu of explicit management of resources. However, for pedagogical reasons,
we will first present the typing rules as in the book in this Section, which use mul-
tisets and splitting, and then reformulate them with LP (Section 6). As hinted in the
introduction, the two systems are not equivalent; in fact, ours is slightly more liberal,
in so far that it types certain processes such as (νννxy) 000 — this is due to our choice of
representation of the R-CLOSE reduction rule.

Type Syntax. We start with some basic common notions. The type system does not
type-check processes directly, but instead focuses on the endpoints used in the process.
The syntax of session types S,T and linear type contexts ∆ is as follows:

S,T ::= end! | end? | ?T.S | !T.S
∆ ::= · | ∆ ,x : T

The end types describe communications that have been ended, where the only remain-
ing operations are closing the channel from one of the endpoints. The input type ?T.S
describes endpoints used for receiving a message and then behaving according to S.
The output type !T.S describes endpoints used for sending a message and then behav-
ing according to S.

(Linear) contexts associate a type to endpoints. We use the comma to add an entry
and · as the empty context. We assume that all entries are distinct. Note that the order
in which information is added to a type context does not matter.

The type system maintains two invariants:

1. No endpoint is used simultaneously by parallel processes;
2. The two endpoints of the same session have dual types, where duality is defined as:

?S.S′ = !S.S′ !S.S′ = ?S.S′ end! = end? end? = end!

The second invariant is maintained by requiring duality when typing restrictions.
The way the first is preserved varies according to the approach adopted to encode lin-
earity.

Mechanising the Meta-Theory of Session Types in Rocq: a Tutorial 11

T-INACT

· ⊢ 000

T-PAR
∆1 ⊢ P ∆2 ⊢ Q

∆1,∆2 ⊢ P ∥ Q

T-RES
∆ ,x : T,y : T ⊢ P

∆ ⊢ (νννxy) P

T-WAIT
∆ ⊢ P

∆ ,x : end? ⊢ x?.P

T-CLOSE
∆ ⊢ P

∆ ,x : end! ⊢ x!.P

T-SEND
∆ ,x : U ⊢ P

∆ ,x : !T.U,y : T ⊢ x!y.P

T-RECV
∆ ,x : T,y : U ⊢ P

∆ ,x : ?T.U ⊢ x?(y).P

Fig. 2 Linear typing rules

Standard Typing Rules. Looking at the rules listed in Figure 2, linearity shows up as
follows:

• in splitting the type context when typing the composition of processes (T-PAR) —
this is what enforces the first invariant:

• requiring the null process to be typed in the empty context (T-INACT);
• by implicitly implementing lookup, consumption and update of an entry in the struc-

ture of the context (T-SEND,T-RECV). A more explicit version of e.g. rule T-SEND
would be:

T-SEND’
∆1 ⊢ x : !T.U ∆2 ⊢ y : T ∆3,x : U ⊢ P

∆1,∆2,∆3 ⊢ x!y.P

T-VAR

x : T ⊢ x : T

where the comma is overloaded to denote context split and “consing” — we have
also added that standard axiom rule for linear variables.

6 The Linearity Predicate

The idea of a linearity predicate was formulated by Crary [3] to enable the encoding
of the meta-theory of substructural systems in a logical framework such as LF (and its
implementation, Twelf) without modifying the framework itself. LF is well known to
support higher-order abstract syntax (HOAS), an encoding technique where the object
logic context is kept implicit, via hypothetical judgments; this has several benefits,
the foremost the relegation of the proof of the substitution lemma to the substitution
property of the framework. However, since LF is an intuitionistic logic, its contexts are
monotonic and do not support substructural use. Crary’s idea was to separate typing
from resource management, the latter handled by a linearity judgment: the typing rules
do not account for linearity, but they are decorated with assumptions indicating when
(bound) variables are introduced in a substructural way. Crary’s main application was

12 Marco Carbone and Alberto Momigliano

L-WAIT
¬free in(x,P)

lin(x,x?.P)

L-WAITCGR
lin(y,P) x ̸= y

lin(y,x?.P)

L-CLOSE
¬free in(x,P)

lin(x,x!.P)

L-CLOSECGR
lin(y,P) x ̸= y

lin(y,x!.P)

L-RES
lin(z,P)

lin(z,(νννxy) P)

L-PARPL
lin(x,P1) ¬free in(x,P2)

lin(x,P1 ∥ P2)

L-PARPR
¬free in(x,P1) lin(x,P2)

lin(x,P1 ∥ P2)

L-RECV
lin(z,P)

lin(z,x?(y).P)

L-SEND
x ̸= y ¬free in(y,P)

lin(y,x!y.P)

L-SENDCGR
z ̸= y lin(z,P)

lin(z,x!y.P)

Fig. 3 The linearity predicate ()

the full linear lambda calculus and its subject reduction property. The idea has recently
been applied to session types, more specifically to Wadler’s CP [16], by Sano et al. [13]
using the Beluga proof assistant, which is also based on LF.

In this tutorial, we show that there is no obstacle in porting Crary’s approach to
any mainstream proof assistant supporting inductive predicates. While for long stand-
ing reasons discussed elsewhere [7] we have to abandon HOAS, it turns out that LP
fits particularly well with well-known techniques to encode binder signatures, namely
well-scoped de Bruijn indexes and explicit contexts as total maps [14] — although
other approaches such as unscoped indexes and contexts as association lists would also
work.

The rules defining the relation lin(x,P), which specifies when an endpoint x is linear
in a process P, are given in Figure 3. As noted earlier, this discipline enforces endpoint
usage that guarantees the absence of races.

Most rules come in a base and a congruence case; let us discuss some cases and how
we have mechanized them. The term x!.P closes a session with endpoint x. Therefore,
the predicate ensures that x is no longer used in the continuation P (rule L-CLOSE).
However, any other y different from x is linear if it is linear in P (rule L-CLOSECGR).
In Rocq, this is simply mechanised as:

Inductive lin {n : nat} : ch n→ proc n→ Prop :=
| LClose : forall (x : ch n) (P : proc n),

¬ free_in x P→ lin x (x ! . P)
| LCloseCgr : forall (x y : ch n) (P : proc n),

lin y P→ x <> y→ lin y (x ! . P)

The rule for restriction L-RES is straightforward. However, its representation in
Rocq needs shifting of de Bruijn indices:

| LRes : forall (x : ch n) (P : proc n.+2),
lin x [fun i ⇒ var_ch (shift (shift i))] P→ lin x ((v) P)

Restriction binds two variables, therefore the endpoint x must be shifted up twice.

https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/linearity_predicate.v#L6

Mechanising the Meta-Theory of Session Types in Rocq: a Tutorial 13

A key case for linearity is parallel composition P1 ∥ P2. Since an endpoint x can be
used in P1 or in P2 but not in both, we use two rules: L-PARPL checks that x is used
linearly in P1 but does not occur in P2 while symmetrically LPARPR makes sure that x
does not occur in P1 but then is linear in P2. The mechanisation is easy:

| LParPL : forall (x : ch n) (P1 P2 : proc n),
lin x P1→¬ free_in x P2→ lin x (P1 ∥ P2)

(* plus symmetric rule *)

The receive case, captured by rule L-RECV, is similar to restriction. Since there is
only a single binder—the placeholder for the received value—we shift by one.

| LRecv : forall (x y : ch n) (P : proc n.+1),
lin y [fun i ⇒ var_ch (shift i)] P→ lin y (x ? (_).P)

Rule L-SEND enforces linearity in endpoint delegation. In the term x!y.P, the end-
point y cannot be used within P, since it will be transferred to the peer of x and sub-
sequently used there. Rule L-SENDCGR covers the case where the linearity of the
delegated endpoint y is not being checked. Importantly, a term is never linear in the
case of self-delegation, i.e., when x = y. In our code, this is formalized as:

| LSend : forall (x y : ch n) (P : proc n),
x <> y→¬ free_in y P→ lin y (x ! y . P).

| LSendCgr: forall (x y z : ch n) (P : proc n),
z <> y→ lin z P→ lin z (x ! y . P)

7 Typing with the Linearity Predicates

We argue that the linearity predicate simplifies the formulation of standard type systems
as the one presented in Fig. 2. But how does one turn such a linear proof system into
one featuring LP? Following on [13], we list a “recipe” to decorate the rules in a type
system with the appropriate LP annotations.

1. If endpoints should not to be shared in the typing rule, then the linearity predicate
must ensure that no sharing occurs for the construct. This is indeed taken care by
LP for parallel composition, where the two rules L-PARPL and L-PARPR handle
context splitting.

2. If the construct binds any new linear endpoint, its typing judgment must check its
linearity by requiring the appropriate LP in the premise(s) of the rules. This is the
case with restriction and input.

3. If the construct requires the absence of other linear assumptions, then there should
be no congruence rules. This is typically the case for axioms and does not apply
here, since the only axiom is for the null process for which congruence does not
apply.

These heuristics need to be fine tuned for calculi with both additive and multiplicative
connectives, as well as exponentials, such as in [3].

14 Marco Carbone and Alberto Momigliano

A key departure from previous literature is that our linearity predicate is coupled
with the notion of updating endpoint types. The need for update is visible for example
in rule T-SEND, where the type of x changes from the premise to the conclusion. In
our setting, where the context is explicit, this is readily achieved by standard functional
update (denoted by ∆ + x : T).

This contrasts with the mechanization of CP in Beluga [13], where the authors in-
troduced a different calculus with “continuation channels” to avoid updating the type
of the same channel. Their solution, though equivalent, requires a change in the syntax
and semantics, whereas our approach maintains a more standard, direct representation.
In passing, note that this issue was not manifest in Crary’s account, since in the lambda
calculus resources are consumed but not updated.

Figure 4 depicts our typing rules featuring the linearity predicate (notation ∆ ⊩l P)
and a context that is never split, but can be updated, meaning a context where the entry
for x has been updated with T — note that that domain of ∆ stays monotonic. We also
use the functional notation ∆(x) = T for looking up a context entry.

Some further remarks: the reader may be surprised by the non-empty context in
rule TL-INACT. However this does not make the system affine, since there is no LP
for 000 — see Exercise 7.2. In rules TL-PAR, TL-WAIT, TL-CLOSE, we thread the
same context, which is neither split nor consumed. Rules TL-SEND, TL-RECV both
update the context, the latter also extending it. Rule TL-RES has a special premise.
Specifically, the linearity predicate for the fresh variables x and y is only checked if x
and y are free in P. This is due to the predicate not holding when x and y do not occur.
This is necessary because of the way our semantics handles closing of a session. For
example, the typable term (νννxy) x?.000 ∥ x!.000 reduces to (νννxy) 000 ∥ 000 and, by structural
congruence, to (νννxy) 000: for the latter term to be typable rule TL-RES must do without
checking linearity of x and y.

TL-INACT

∆ ⊩l 000

TL-PAR
∆ ⊩l P ∆ ⊩l Q

∆ ⊩l P ∥ Q

TL-RES
∆ ,x : T,y : T ⊩l P free in(x,P)⇒ lin(x,P) free in(y,P)⇒ lin(y,P)

∆ ⊩l (νννxy) P

TL-WAIT
∆(x) = end? ∆ ⊩l P

∆ ⊩l x?.P

TL-CLOSE
∆(x) = end! ∆ ⊩l P

∆ ⊩l x!.P

TL-SEND
∆(x) = !T.U ∆(y) = T ∆ + x : U ⊩l P

∆ ⊩l x!y.P

TL-RECV
∆(x) = ?T.U (∆ + x : T),y : U ⊩l P lin(y,P)

∆ ⊩l x?(y).P

Fig. 4 Reformulating the typing rules with the linearity predicate

Mechanising the Meta-Theory of Session Types in Rocq: a Tutorial 15

Exercise 7.1 (Choice). Consider the standard typing rule for binary internal choice as
in [6], for i = 1,2.

T-SEL

∆ ,x : Ti ⊢ P
∆ ,x : T1 ⊕T2 ⊢ x◁ i.P

Reformulate it with the LP. Keep in mind the methodology delineated above. What
happens if we instead consider n-ary choice? Now add also external choice. Does it
bring in any additional insights?

Exercise 7.2 (Affine typing). One way to make the type system affine is to generalize
the axiom rule for 000 as follows:

T-INACT’

∆ ⊢ 000

But, wait! This is the rule we already have! How would you account for that?

We now look at the encoding of the typing rules. After this discussion, it is rather
uneventful and we leave it to the accompanying code (). Note that, as we have antici-
pated, the typing context is defined as a total map:

Definition env (n:nat) := ch n→ sType.

This can be seen as a stream of types, where the empty map is represented as env 0.
We define two main operations over environments:

1. update (): this is the usual functional overriding;
2. shift env (), notation T ::: ∆ : this is analogous to the extension operation to type

environments and amounts to consing a new type at the top of the stream.

A technicality: we could have defined the typing environment as the map fin n -> sType,
making the connection to Autosubst2’s parallel substitutions more explicit. In this
case shift env would be just an instantiation of the scons operation.

8 Preservation Results

In this section, we present the various results concerning both the linearity predicate
and the typing rules. First, we show that linearity is preserved under substitution and
structural congruence. Then, we move to the typing rules and show preservation results
for substitution, congruence, and reduction.

https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/typing.v#L42
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/env.v#L9
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/env.v#L39

16 Marco Carbone and Alberto Momigliano

8.1 Linearity Preservation

Linearity interacts subtly with substitution. If two distinct endpoints are identified by a
non-injective substitution, linearity can be lost: two occurrences of distinct variables in
a process may collapse into a single endpoint after substitution, creating multiple uses
of the same channel. Injectivity with respect to the free occurrences of x in P prevents
this collapse. The following lemma formalizes this preservation:

Lemma 8.1 (Preservation of linearity under substitution) Let x be an endpoint, P a
process, and σ be a substitution such that injectiveNS(x,P,σ). Then,

1. If lin(x[σ],⟨σ⟩P) then lin(x,P) ().
2. If lin(x,P) then lin(x[σ],⟨σ⟩P) ().

Proof Intuition. The proof proceeds by structural nduction on P and inversion on the
linearity predicate. Both directions need injectivity over x and the free names of P
as well as Lemma 4.1, which depends on injectivity. For example, in the first case,
consider a substitution σ that clashes endpoints x and y, e.g., x[σ] = z and y[σ] = z.
Then, it is clearly the case that lin(x[σ],y[σ]!.000) holds, while lin(x,y!.000) does not.

In the other direction, in order to show that lin(x[σ],x[σ]!.⟨σ⟩P), it must be the
case that ¬free in(x[σ],⟨σ⟩P). By inverting the assumption lin(x,x!.P), we obtain
¬free in(x,P). That means that we must show that free in(x[σ],⟨σ⟩P) implies free in(x,P),
which follows from Lemma 4.1 (part 1).

⊓⊔

Lemma 8.2 (Preservation of linearity under congruence ().) Assume that P ≡ Q
holds: lin(x,P) iff lin(x,Q).

Proof Intuition. By induction on the derivation of P≡Q. Because of the bi-implication,
we must use both directions of Lemma 8.1. It is interesting to observe that all substitu-
tions used by structural congruence, namely swap and extrusion (shift up by two) are
fully injective functions. Other relevant lemmas are 4.1 and 4.2. ⊓⊔

Our next proof obligation is the preservation property for the linearity predicate
under reduction: if a process P reduces to Q, and x is linear in P, then x should also
be linear in Q. It is important to notice, however, that this property only holds when
P is well-typed. If we not check for well-typedness, linearity may not be preserved by
reduction. For example, consider the process

x!y.P ∥ x?(z).Q

with ¬free in(y,P). After communication, y is substituted for z in Q. If z is not linear
in Q, then y will not be linear in the resulting process either. Typing ensures that all
bound names, namely those bound by restriction and input, are linear. Hence, we will
be able to prove this lemma only after we have established preservation of types under
congruence.

https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/linearity_predicate.v#L163
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/linearity_predicate.v#L33
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/linearity_predicate.v#L300

Mechanising the Meta-Theory of Session Types in Rocq: a Tutorial 17

8.2 Type Preservation

Before tackling type preservation, we need some further definitions. We adapt the idea
of context morphism [14] to our setting, which is central to state and prove the substitu-
tion lemma for our typing discipline. A context morphism is just a well-typed (parallel)
substitution between contexts, say σ : Γ → ∆ , meaning “σ turns ∆ -assumptions into
Γ -assumptions”. For our purposes, we first need to relativize the action of σ to the free
names of P. This yield the following definition:

Definition 8.1 () ltc(∆ ,Γ ,σ ,P) iff ∀i, free in(i,P)→ Γ (i) = ∆(i[σ]).

There is a further twist: we need to make the action of the substitution compatible
with updating types, as required by our typing rules. This means that the ltc predicate
must be preserved by the update function. This property, however, is guaranteed only
if the substitution is injective.

As a counter-example, consider a non-injective substitution σ defined by x[σ] = x,
y[σ] = x, and z[σ] = y. Assume that ∆ = {x : T,y : T,z : T ′} and Γ = {x : T,y : T ′}.
Then, for any P, ltc(∆ ,Γ ,σ ,P) clearly holds because ∆(x) = Γ (x[σ]) = T , ∆(y) =
Γ (y[σ]) = T , and ∆(z) = Γ (z[σ]) = T ′. However, if we update ∆ and Γ according to
the substitution, we obtain the environments:

∆ ′ = ∆ + x : T ′ = {x : T ′,y : T,z : T ′},
Γ ′ = Γ + x[σ] : T ′ = {x : T ′,y : T ′}.

In this case, ltc(∆ ′,Γ ′,σ ,P) does not hold, since ∆ ′(x) = Γ ′(x[σ]) = T ′, but ∆ ′(y) =
T ̸= Γ ′(y[σ]) = T ′.

Unfortunately, the definition of injectiveNS(x,P,σ) will not do. For this purpose,
we use a more standard definition, indeed the one by Sangiorgi & Walker [12], which
refers to injectivity over the (finite) set of free names within a process:

Definition 8.2 () injectiveS(P,σ) iff ∀i j, free in(j,P)→ free in(i,P)→ σ i = σ j →
i = j

Again, we need to state and prove the substitution lemma in both directions — this
is the equivalent of the context morphism lemma in [14]:

Lemma 8.3 (Preservation of substitution under types) Assume that injectiveS(P,σ)
and ltc(∆ ,Γ ,σ ,P) hold:

1. If ∆ ⊩l P then Γ ⊩l ⟨σ⟩P ().
2. if Γ ⊩l ⟨σ⟩P then ∆ ⊩l P ().

Proof Intuition. By structural induction on P. The proof relies on several inversion
lemmas about the ltc relation as well as the substitution properties for free names
(Lemma 4.1) and the linearity predicate (Lemma 8.1). ⊓⊔

Note that this property (as the later case of weakening) can also be proven by rule
induction on the given type derivation without much difference; this is due to the fact
that the type system is syntax-directed, that is, there is exactly one rule for each process
constructor.

https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/env.v#L103
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/free_names.v#L39
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/typing.v#L72
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/typing.v#L170

18 Marco Carbone and Alberto Momigliano

Theorem 8.1 (Preservation of types under congruence ().) Assume that P ≡ Q
holds: ∆ ⊩l P iff ∆ ⊩l Q.

Proof Intuition. By induction on the derivation of P ≡ Q.All substitutions used by con-
gruence are injective therefore all the previous lemmas assuming injectivity can be
easily applied. ⊓⊔

Now, we can go back and establish:

Lemma 8.4 (Preservation of linearity under reduction ().) Assume that ∆ ⊩l P and
P → Q hold: if lin(x,P) then lin(x,Q).

Proof Intuition. By induction on the derivation of P → Q and inversion on those of
∆ ⊢ P and lin(x,P). Case R-PAR requires Lemma 4.3. Congruence calls the related
congruence Lemmas 8.2 and 8.1. The communication case R-COM makes use of the
substitution Lemmas 4.1 (part 1) and 8.1 (part 2). ⊓⊔

The next lemma allows us to make arbitrary updates over endpoints that do not occur
in a typed process.

Lemma 8.5 (Weakening ()) Assume that ¬free in(x,P) holds. Then, if ∆ ⊩l P then
∆ + x : T ⊩l P.

Proof Intuition. By structural induction on P and inversion on the derivation of ∆ ⊩l P
using properties of the update function. ⊓⊔

We stress that this weakening lemma is a property of the typing rules with respect to
the update operation. This differs from the standard weakening lemma, which allows
the addition of arbitrary endpoints (of terminated sessions) to a linear context. In our
setting, however, the context itself is not linear (see rules T-PAR, T-END, and T-DEL).
Accordingly, the lemma instead ensures that one may assign any type to endpoints not
occurring in a typed process.

Weakening is needed in the proof of type preservation (subject reduction), specifi-
cally for handling the R-COM case, which we tackle next.

Theorem 8.2 (Type Preservation ()) Assume that free in(x,P) entails lin(x,P). If
∆ ⊩l P and P → Q, then ∆ ⊩l Q.

Proof Intuition. The proof proceeds by induction on P → Q, yielding five cases cor-
responding to the rules R-RES, R-PAR, R-STRUCT, R-CLOSE, and R-COM. Most
cases are straightforward applications of the induction hypothesis or, in the case of
R-STRUCT, of preservation of congruence (Lemma 8.1).

The most interesting case is R-COM, where the linearity of the communicated end-
point plays a crucial role in ensuring that typability is preserved. From the hypothesis

∆ ⊩l (νννxy)
(
x!z.P ∥ y?(w).Q

)
we must prove that

∆ ⊩l (νννxy)
(
P ∥ Q{z/w}

)

https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/typing.v#L260
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/typing.v#L694
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/typing.v#L780
https://github.com/carbonem/rocq-session-types-tutorial/tree/main/theories/typing.v#L887

Mechanising the Meta-Theory of Session Types in Rocq: a Tutorial 19

Applying inversion several times on the hypothesis, we obtain that the two endpoints x
and y are linear in both P and Q, respectively, i.e., lin(x,P) and lin(y,Q). Additionally,
each subterm is typable as:

∆ ,x : T,y : ?T ′.T ⊩l P ∆ ,x : ?T ′.T,y : T ,w : T ′ ⊩l Q

Here we observe that, since our type system does not directly split the type environ-
ment, the type of x is not updated while typing Q and similarly for y with respect to P.
However, thanks to linearity of both x and y, we know that x does not occur in Q and y
does not occur in P. Therefore, we can apply weakening (Lemma 8.5) to update their
type correctly.

Another key observation is the requirement that the communicated endpoint z,
which is free in the original term before reduction, is assumed to be as in the hypothe-
sis of the theorem. In fact, thanks to that, we know that z is not free in P and, since it
occurs in x!z.P, it cannot be free in Q. This makes the substitution Q{z/w} injective,
ensuring that no clashes occur which could compromise typability.

⊓⊔

9 Conclusions

In this tutorial, we have mechanised the meta-theory of binary session types in the Rocq
proof assistant, focusing on two of the central challenges of the area: the treatment of
binders inherited from the π-calculus, and the enforcement of a linear type discipline.
Our approach combines well-scoped de Bruijn indices with the linearity predicate, thus
separating typing from resource management while ensuring well-formedness by con-
struction. Along the way we have clarified the design space underlying the mecha-
nisation of concurrency calculi, showing how concepts such as injective renamings,
context updates, and preservation lemmas interact to yield machine-checked proofs of
type preservation. Although our development does not claim novelty with respect to
the theory itself, we believe that the Rocq formalisation contributes a useful reference
point for researchers interested in the practicalities of mechanising session types.

The mechanisation highlights a number of lessons. First, the use of dependent types
to encode scope information pays off in the form of strong guarantees against dan-
gling references and shorter proofs. Second, the linearity predicate provides a modular
and proof-friendly account of resource usage, avoiding the heavy infrastructure often
associated with explicit context splitting. Finally, the process of formal development
inevitably exposes small inconsistencies or oversights in the literature, which can be
corrected or refined in the course of mechanisation.

The present work has concentrated on the core calculus of binary session types, but
natural extensions include recursion, unrestricted channels, and subtyping, all of which
present additional difficulties. Another relevant direction is to pursue more automation
for repetitive reasoning steps via Rocq’s tactic language and proof-search plugins. Fi-
nally, the ongoing development of the “concurrent calculi formalisation benchmark”

20 Marco Carbone and Alberto Momigliano

provides an ideal setting in which to situate and extend our contributions, fostering a
more systematic understanding of the mechanisation of concurrent type systems.

In summary, we hope that this tutorial will serve both as a gentle entry point for new-
comers to mechanised concurrency theory and as a platform for further explorations
into the design and verification of session-typed languages.

References

1. Nick Benton, Chung-Kil Hur, Andrew Kennedy, and Conor McBride. Strongly typed term repre-
sentations in coq. J. Autom. Reason., 49(2):141–159, 2012.

2. Marco Carbone, David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, Frederik Krogsdal
Jacobsen, Alberto Momigliano, Luca Padovani, Alceste Scalas, Dawit Tirore, Martin Vassor,
Nobuko Yoshida, and Daniel Zackon. The concurrent calculi formalisation benchmark. In Ilaria
Castellani and Francesco Tiezzi, editors, Proc. COORDINATION ’24, volume 14676 of Lect.
Notes Comput. Sci., pages 149–158, 2024.

3. Karl Crary. Higher-order representation of substructural logics. In Proc. ICFP ’10, pages 131–
142, 2010.

4. Simon J. Gay and Malcolm Hole. Types and subtypes for client-server interactions. In S. Doaitse
Swierstra, editor, ESOP ’99: Proc. 8th European Symp. on Programming, volume 1576 of Lect.
Notes Comput. Sci., pages 74–90. Springer, 1999.

5. Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta Informatica,
42(2-3):191–225, 2005.

6. Simon J. Gay and Vasco T. Vasconcelos. Session Types. Cambridge University Press, 2025.
7. Robbert Krebbers, Alberto Momigliano, and Brigitte Pientka. Formalization of programming

languages. In Jasmin Blanchette and Assia Mahboubi, editors, Handbook of proof assistants.
Springer, 2025. Forthcoming.

8. Assia Mahboubi and Enrico Tassi. Mathematical components. In Bruno Woltzenlogel Paleo and
David Delahaye, editors, All about Proofs, Proofs for All, volume 55 of Studies in Logic, pages
33–43. College Publications, 2010.

9. T. F. Melham. A mechanized theory of the π-calculus in HOL. Nordic J. of Computing,
1(1):50–76, March 1994.

10. Benjamin C. Pierce. Types and Programming Languages. MIT Press, February 2002.
11. Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael

Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg, Andrew Tolmach, and Brent Yorgey. Programming
Language Foundations, volume 2 of Software Foundations. Electronic textbook, 2024. Version
6.7, http://softwarefoundations.cis.upenn.edu.

12. Davide Sangiorgi and David Walker. The π-Calculus - a Theory of Mobile Processes. Cambridge
University Press, 2001.

13. Chuta Sano, Ryan Kavanagh, and Brigitte Pientka. Mechanizing session-types using a structural
view: Enforcing linearity without linearity. Proc. ACM Program. Lang., 7(OOPSLA):235:374–
235:399, 2023.

14. Kathrin Stark, Steven Schäfer, and Jonas Kaiser. Autosubst 2: reasoning with multi-sorted de
bruijn terms and vector substitutions. In Assia Mahboubi and Magnus O. Myreen, editors, CPP,
pages 166–180. ACM, 2019.

15. Vasco T. Vasconcelos. Fundamentals of session types. Inf. Comput., 217:52–70, 2012.
16. Philip Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384–418, 2014.
17. Daniel Zackon, Chuta Sano, Alberto Momigliano, and Brigitte Pientka. Split decisions: Explicit

contexts for substructural languages. In Kathrin Stark, Amin Timany, Sandrine Blazy, and Nicolas
Tabareau, editors, Proceedings of the 14th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2025, Denver, CO, USA, January 20-21, 2025, pages 257–271. ACM,
2025.

http://softwarefoundations.cis.upenn.edu

Mechanising the Meta-Theory of Session Types in Rocq: a Tutorial 21

A Additional Exercises and Selected Solutions

Exercise A.1 (Sending a channel to itself). Give a typing rule so that x!x.P is well-
typed. Do you need to modify the LP? If so, how? Reprove type preservation.

Solution to Exercise 7.1. The typing rule is unchanged. Add the LP:

L-ICHOICE

¬free in(x,P)
lin(x,x◁ i.P)

L-ICHOICECGR

lin(y,P) x ̸= y
lin(y,x◁ .P)

Solution to Exercise 7.2. You have to modify the LP by adding the obvious clause —
arguably, now the name “linear” is a stretch:

L-INACT

lin(x,000)

You need to reprove preservation of linearity.

	Mechanising the Meta-Theory of Session Types in Rocq: a Tutorial
	Marco Carbone[0000-0001-9479-2632] and Alberto Momigliano[0000-0003-0942-4777]
	Introduction
	Syntax
	Representation in Rocq

	Operational Semantics
	Free Names
	Towards Session Types
	The Linearity Predicate
	Typing with the Linearity Predicates
	Preservation Results
	Linearity Preservation
	Type Preservation

	Conclusions
	References
	References
	Additional Exercises and Selected Solutions

