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Abstract. We report on work in progress in building an environment for the validation of
the meta-theory of programming languages artifacts, for example the correctness of compiler
translations; the basic idea is to couple property-based testing with binders-aware functional
programming as the meta-language for specification and testing. Treating binding signatures and
related notions, such as new names generation, α-equivalence and capture-avoiding substitution
correctly and effectively is crucial in the verification and validation of PL (meta)theory. We
use Haskell as our meta-language, since it offers not only a very expressive type system,
but various libraries for both random and exhaustive generation of tests [7, 8, 13], as well
as for binders [16]. We validate our approach on benchmarks of mutations presented in the
literature [2,10] and some examples of code “in the wild”. In the former case, not only did we
very quickly (re)discover all the planted bugs, but we achieved that with very little configuration
effort with comparison to [10]. In the second case we located several simple bugs that had
survived for years in publicly available (academic) code. We believe our tool adds to the
increasing evidence of the usefulness of property-based testing for semantic engineering of
programming languages, in alternative or prior to full verification.

1 Introduction

Recent years have seen major advances in what we could call the meta-correctness of programming,
that is the (formal) verification of the trustworthiness of the tools with which we write programs:
from static analyzers to compilers, including parsers, pretty-printers all the way down to run time
systems, see projects such as CakeML (cakeml.org) and VST (vst.cs.princeton.edu).

More specifically, we are (in pretty good company [10, 15], to cite only two related projects)
interested in providing support to the “working semanticist” while designing and prototyping
programming languages and related artifacts. To date, very few PL are based on rigorous models,
Standard ML being the shining example. On the other corner, infamous is the case of PHP:

“There was never any intent to write a programming language (. . . ) I have absolutely no idea how to
write a programming language, I just kept adding the next logical step on the way”. (Rasmus Lerdorf,
see http://itc.conversationsnetwork.org/shows/detail58.html)

In the middle we find lengthy prose documents such as the Java Language Specification, whose
internal consistency is but a dream, as a very recent paper shows [1]. The properties that PL artifacts
should satisfy spans from type soundness as in the above case, to compiler correctness (e.g., CompCert
http://compcert.inria.fr/), to more intensional guarantees related to security (SECOMP,
https://secure-compilation.github.io). Further, although the average programmer is not
likely to write her own programming language, she may try her hands on a Domain Specific Language,
and this design may incorporate flaws that will trickle down and produce hard-to-find bugs in the
final product. In this sense “every programmer is a language designer at some point” (Pierce, from
the introduction to Software Foundations).

This is all good, but the formal verification of PL metatheory is still a very labor-intensive task,
even (or more so) with a proof-assistant, so much that there are perhaps only a few dozen people in
the world able and willing to carry out such an endeavor. A lighter alternative is validation, in the



form of property-based testing (PBT) as pioneered by QuickCheck [7]: here, we try to refute, rather
than prove, the properties of the calculus underlying our software artifacts, via random or exhaustive
generation of test cases. For many classes of (typically) shallow bugs, a tool that automatically finds
counterexamples can be surprisingly effective and can complement formal proof attempts by warning
when the property we wish to prove has easily-found counterexamples. The beauty of this form of
meta-theory model checking is that the properties that should hold are already given by means of the
theorems that the calculus under study is supposed to satisfy. Of course, those need to be fine tuned
for testing to be effective, but we are free of the thorny issue of specification generation.

A particular dimension in validation in this domain is the handling of binding signatures, by which
we mean the encoding of PL constructs sensitive to naming and scoping: declarations, closures,
α-equivalence of method/function arguments, capture-avoiding substitutions, generation of fresh
names, nonces, etc [4]. These are ubiquitous in the specification of high-level programming languages,
surprisingly easy to get wrong, often callously ignored or so awkwardly supported that they may
constitute a unnecessary stumbling block for validation and verification.

This paper describes work in progress in building an environment where one can validate PL
meta-theoretical properties with a combination of automated testing tools and an appropriate treatment
of binders. We use Haskell as our meta-language, since it offers not only a very expressive type
system, but various libraries for both random and exhaustive generation of tests [7,8,13] as well
as for binders [16]. The idea is to allow the user to specify her semantic model(s) with a human-
friendly notion of binders and validate them with a cascade of testing tools with the least amount of
configuration effort. This is contrast with the competition where either the testing strategy is fixed [5]
or binding issues are totally ignored (or both) [10]. We validate our approach both on benchmarks of
mutations presented in the literature [2,10] and some examples of code “in the wild”. In the former
case, not only did we very quickly (re)discover all the planted bugs, but we achieved that with very
little configuration effort with comparison to [10]. In the second case we located several simple
bugs that had survived for years in publicly available (academic) code. As a side effect, we have
gained some new insights about which testing tool is better suited to various domains and facets in PL
meta-theory.

2 Binders-aware PBT

Our tool offers a PBT environment integrating several Haskell libraries, composed, as expected with a
thin layer of monadic code. There are several (non-orthogonal) dimensions around which we can
arrange test data generation in a PBT setting:
– random vs. exhaustive test generation;
– automatic vs. hand-written configuration of generators;
– For exhaustive enumeration, whether we define upper bounds for generation in terms of size

(number of constructors in a term) or depth (depth of the AST for a constructor).
We assume that the reader is familiar with QuickCheck [7] (random enumeration, hand-written genera-
tors, minimal counterexamples exist only if the user implements shrinking) and we briefly describe the
others libraries we have integrated. SmallCheck [13] is essentially an exhaustive enumeration version
of QuickCheck, where the upper bound is defined as term depth. LazySmallCheck [13] is a variant
of SmallCheck that leverages Haskell’s laziness to get around the limits of SmallCheck’s brute
enumeration of values: the idea is to use partially-defined expressions (in logical terms, non-ground
ones) to stand for the set of all their instantiations; e.g. lazy evaluation will realize that a list such (1
: 0 : undefined) is not, say, ordered without generating any concrete list (1 : 0 : xs) of
ever increasing depth. Feat [8] is built on the concept of functional enumerations, that is, efficiently
computable bijections from natural numbers to values. Values are partitioned with respect to their size.
This fact combined with specific implementation techniques (i.e. memoisation, memory sharing)
allows the enumeration process to be performed for a specific size or, more interestingly, from an



arbitrary index, without incurring in the cost of enumerating the preceding smaller values. All the
above tools allows the automatic derivation of generators out of the grammar rules of the language
under study; however, it is also possible to fine tune them manually, to a different degree in each tool,
e.g., adjusting the weights of certain constructors.

The next ingredient is how to best represent binders, a long standing issue in the context of
meta-theory verification. Once discarded using a naive named syntax, a.k.a. standard AST, for its
inadequacy and prone-ness to mistakes, one choice is the locally nameless representation [3]: this
couples the use of raw names for free variables with de Bruijn indexes for bound variables; the latter
are basically pointers linking a bound variable to its binding site, thus collapsing all α-equivalent
terms into a unique canonical representation. E.g., Java 8 anonymous functions (int x) -> x
and (int y) -> y would both be mapped to the AST (L int 1), for L a putative constructor
for lambdas.

While this technique is handy and widespread, it is very hard to read for humans and furthermore
it needs to be re-implemented for every binding operator in every case study one wants to validate.
Unbound [16] is a Haskell library that provides a DSL for the nameless representation, while
offering to the user a named surface syntax. The library ensures that we cannot encode illegal values
(i.e. a bound variable without a surrounding binder) and at the same times implementing useful
operations such as capture-avoiding substitutions, fresh name generations etc. Since Unbound sits
on top of several other Haskell libraries, its coexistence with PBT tools is not immediate; in fact it
makes the adoption of some problematic, e.g. the automation of QuickCheck generators described
in hackage.haskell.org/package/generic-random.

3 Experiments

We validate our approach with two sets of experiments, the first showing that we easily handle some
of the benchmarks of mutations presented in the literature [2,10], the second hunting for bugs “in the
wild”. We give some details of the first case, while we refer to [9] for much more.

Functional programming with lists This comes from the PLT-Redex benchmark suite http:
//docs.racket-lang.org/redex/benchmark.html and concerns the type soundness of a
prototypical λ-calculus with lists and related operations, whose BNF includes the following:

Types σ ::= int | ilist | σ→σ′

Terms M ::= x | λx:σ. M | M1 M2 | c
Constants c ::= n | nil | cons | hd | tl | plus
Values V ::= c | λx:σ. M | cons V | cons V1 V2 | plus V

Given rules for typing (Γ `M : τ) and small step reduction (M{M′), and a judgment error
identifying expressions that may produce run-time errors such as taking the head of an empty list, the
properties we wish to validate are:

M :τ ∧ M{M′ =⇒ M′ :τ (Preservation)
M :τ ∧ ¬(M is a value) ∧ ¬(M error) =⇒ ∃M′.M{M′ (Progress)

To give a feel of what using Unbound entails we report the encoding of Terms in which Constant
and Type are the data-types for the homonymous grammar rules, whereas Bind come from
Unbound’s DSL, signaling that the constructor Lam has a binding occurrence of a variable Name;
this provides for free α-equivalence of terms with binders and automatically derives functions for
substitutions, free names etc.

data Exp = Const Constant
| Var (Name Exp)
| Lam Type (Bind (Name Exp) Exp)
| App Exp Exp



Bug Cl F (au) F (hw) SC (au) SC (hw) LSC (hw) QC (hw) αCheck

B#1 (prog.) S 10.2 1.5 1.0 2.8 0.1 18.0 12.2
B#1 (pres.) S 35.4 61.1 8 8 18007.7 341.4 311.1
B#2 (prog.) M 618.2 65.6 3960.7 13269.2 0.8 4010.8 271.3
B#3 (prog.) S 9.7 1.6 1.0 2.8 0.1 16.4 7.3
B#3 (pres.) S 10.8 9.4 7.2 68.7 2.7 7.3 39.9
B#4 (prog.) S 8 8 8 8 10.1 8 8
B#5 (pres.) S 37134.8 4191.7 8 8 2.9 8 8
B#6 (prog.) M 36453.6 4158.8 8 8 2.5 8 298234
B#7 (prog.) S 124.1 445.7 4.7 3792.1 2.4 510.4 1042
B#8 (pres.) U 2.8 9.5 8 759.7 5.6 100.4 21.3
B#9 (pres.) S 35.5 58.6 8 8 17297.1 243.2 18.2

Table 1. Performances on the functional programming with lists benchmark

For example, we encode the identity function on integers as Lam TyInt (bind x) (Var x)),
where x = s2n "x", using a built-in that converts strings to Unbound names; this is actually
syntactic sugar for the nameless term we saw in Sect. 2.

The benchmark introduces nine mutations with Redex’s difficulty classification (shallow, medium,
unnatural) to be spotted as a violation of either or both properties. E.g., the first mutation introduces
a bug in the typing rule for application, matching the range of the function type to the type of the
argument (on the right, the correct rules):

Γ`M :σ→τ Γ`N :τ
Γ`M N :τ T−APP−B1

Γ`M :σ→τ Γ`N :σ
Γ`M N :τ T−APP−OK

We show in Table 1 some experimental results, taken on a machine with an Intel Core 2 Duo CPU
2.4GHz and 4GB of RAM. The measurements are reported in milliseconds and were collected by
averaging the execution times of ten runs. The cells marked with ’8’ indicate that no counterexamples
have been produced within the time limit, which we set to 300 seconds. Cl reports Redex’s classi-
fication of the hardness of bugs; hw and au stands for the hand-written and automatically derived
generators, whereas F, SC, LSC and QC are respectively Feat, SmallCheck, LazySmallCheck and
QuickCheck. We also add a column with results on the same benchmark of αCheck [5] (under the
best available strategy, manually chosen). While comparing our tool with an experimental nominal
logic programming interpreter has an orange-to-apple taste, the latter is the only tool where PBT is
coupled with a declarative handling of binding signatures.

QuickCheck missed three bugs and, as usual, it required a hand-written generator whose develop-
ment can be tricky, especially if one also wants shrinking. SmallCheck was the worst of the five
and it found its bugs only when invoked with the exact specific depth of the bug, which of course is
an unrealistic assumption. Using partially defined AST seems to really help in quickly discarding a
whole classes of non-well typed terms; indeed, LazySmallCheck was the only tool that was able
to find all the bugs. Feat’s performances are encouraging, considering it does not use laziness as
LazySmallCheck does, which, as we will see shortly it is not always a successful strategy. Feat was
able to find all but one counterexamples in less than five seconds without incurring in the exponential
explosion brought by enumeration by depth. The hand-written generators performed better than the
automated ones, but only in two cases this would have been been discernable by the user.

By construction Feat exhibits size-minimal counter-examples, while (Lazy)SmallCheck produces
depth-minimal ones. In this benchmark, however, they essentially reported very similar terms.

Information Flow Security Here we exit the comfort zone of functional programming and standard
type soundness to tackle more intensional properties, related to (static) information flow security,
which are notoriously hard for (random) PBT [11]. The setup, inspired by [2] is a model of a basic



bug check Nit αC F (au) SC (au) LSC (hw) Description

B#1 conf sp 30.2 12857 55.9 8 second premise of seq rule omitted
B#1 non-inter 8 6001 8 9520 8 ditto
B#2 non-inter sp 1923 8 83.1 4.37 var swap in ≤ premise of assn rule

Table 2. Performances on the info flow security benchmark

imperative language where variables are assigned a security level (the higher the more confidential)
and where a type system l`c, for command c and security level l, guarantees that c only contains safe
flows to variables whose confidentiality is over l. This language has a big step-indexed operational
semantics 〈c,σ〉⇓nσ′ relating a command and an input state to the final state, where the index is a
sort of “fuel” to tame non-termination. The properties of interest relate states that agree on the value
of each variable (strictly) below a certain security level, denoted as σ1≈<lσ2.
Confinement If 〈c,σ〉⇓nτ and l`c then σ≈<lτ;
Non-interference If 〈c,σ〉⇓nσ′, 〈c,τ〉⇓nτ′, σ≈≤lτ and 0`c then σ′≈≤lτ

′;
The challenge in validation here lies not only in the complexity of the test data that we are

generating (states, security assignments, rather than simply expressions), but how constrained they are:
viz. non-interference requires the generation of two execution states (σ and τ) that are indistinguishable
under a certain security level. We list in Table 2 the results over two mutations in the typing rules,
following [2]. Again we add a column for αCheck and one for NitPick, the counterexample generator
for Isabelle/HOL, noting that those specifications are relational and that NitPick may produce possible
false positives (sp fr “spurious”). Only SmallCheck was able to find all bugs with times comparable
to αCheck. We conjecture that this is due to the possibility of setting selective upper bounds for
enumeration, a feature not present in LazySmallCheck or Feat. We abandoned here QuickCheck
since the complexity of the premises of our properties made coverage hopeless. Using hand-written
generators did not pay off compared to the automatically derived ones. In all cases we had to manually
tune the properties so that useless test data could be discarded (i.e. states with a number of variables
different from the ones used in the command that we are executing). The take-home lesson is that
using different testing strategies and tools is winning over a fixed one, however refined this may be.

Code “in the wild” While it is reassuring to be able to find mutations listed in the literature, the
proof of the pudding is exercising code whose validity is not known, save for having stood some
unit testing. This also eliminates any bias in the definition of hand-written generators, which can be
skewed by the foreknowledge of the existence of a bug. Of course, we are limited to testing Haskell
implementation of PL artifacts available on the net and we selected some whose soundness properties
were immediate. We adopted a feedback-loop strategy by which we searched for bugs, corrected
the spec and then restarted. Once we reached what seemed like a fixed point, we collected coverage
statistics about the main functions and declared “victory”. We set the system to use Feat first and it
paid off immediately — the other strategies did not contribute any further bug.

Among several experiments (see [9]) here we mention taking on an Haskell porting (code.
google.com/archive/p/tapl-haskell/) of the code coming with Pierce’s textbook “Types
and Programming Languages”, in particular fullsimple, a model of the core of Standard ML. We
found nine fairly shallow bugs falsifying the progress property, which we do not have the space to
discuss. We impute them to lack of attention to the interaction of different language features, such
as type ascription, variant types, etc. However trivial, they had survived some pretty extensive unit
testing, at least for academic standards.

4 Conclusions and future work
Although at an early stage of development, we believe our tool adds to the increasing evidence
of the usefulness of property-based testing for semantic engineering of programming languages,



in alternative or prior to full verification, and should be added to the work flow of PL design and
verification: spec’n’check in this context is dirt simple, quick and effective in locating shallow but
irritating bugs and doubling as a compelling way to do regression testing.

The success of our approach can be attributed to two factors: first, the integration with a tool
such as Unbound, which handles binders almost as easily as with named syntax; this without
incurring in significant run-time penalties or, more importantly in this setting, false positives stemming
from incorrect implementation of basic notions such as substitutions etc. Secondly, the possibility
of leveraging different cascading testing strategies: in each benchmark, at least one strategy was
successful in catching the required bug. Contrary to common expectations, we found random testing
to be in this domain labour intensive without providing the ability to go “deep” in any meaningful
way. Exhaustive enumeration, by contrast, revealed to be an excellent choice: easy to use, predictable
and reasonably effective in bug finding. Recent improvements [6] in the generate-and-test approach
for properties with hard to satisfy conditions will make it scale even further.

We envision our testing environment to be the target of even more declarative semantic engineering
tools such as Ott [14], which offers the possibility of specifying PL theory as high-level texts
(grammars and proof rules in ASCII) and then converting it to executable specs in a variety of proof
assistants — one strong point in common with us being the use of the locally nameless style for
binders. The framework would benefit from an extension with a source language for specifying and
automatically deriving custom generators, possibly following [12]. We also plan to tackle bigger
case studies, such as validating existing programming languages directly implemented in Haskell:
Idris (http://www.idris-lang.org/) comes to mind, a functional programming language with
dependent types for whose implementation there are several conjectured soundness properties ready
to be validated.
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A Appendix for the Reviewers

In this section we provide some indications on how to reproduce the discussed results. Our develop-
ment lives under Linux and hereafter we assume to be in such an environment as well. Nonetheless,
we believe that it should be possible to reproduce the results also on both OS X and Windows (i.e. by
means of Cygwin). The code relative to the experiments can be downloaded from a dedicated github
repository https://github.com/GuglielmoS/pbtonplmt. Inside it you will find four folders,
namely:
– stlc-redex, which contains the simply typed lambda calculus code;
– imp-stc, which contains the information-flow example;
– fullsimple and stlc-unbound, which refer to the code-in-the-wild section.

The testing and binding related libraries that have been used come as Haskell packages. As a
consequence, compiling and executing the experiments require their installation. To ease this phase,
we adopted the Haskell tool Stack (https://www.haskellstack.org/). Assuming it installed on
the system one can directly compile each experiment without additional effort, because the third-party
libraries will be automatically downloaded and installed during the build phase. Furthermore, using
stack implies that the versions of the Haskell compiler and of all the libraries will be consistent.

To compile the code of an experiment, enter in the experiment folder and then execute the stack
build command. For instance, the stlc code can be compiled in the following way:

$ cd stlc-redex/
$ stack build

In stlc-redex/ and imp-stc/ there are Python3 and Bash scripts which allow one to automatically
collect and average the timings of counterexample search for each considered mutation. The main
script is called test all and can be invoked as one would normally do with usual Bash scripts. As an
example, reproducing the simply typed lambda calculus results can be done with $ ./test_all
The number of runs is set to 10 and the output is printed in the CSV format. In addition to the average
execution time there are also the timings for each single run of the experiment.

Regarding the code-in-the-wild counterexamples, there are no benchmarking scripts. However, one
can search and obtain the counterexamples by executing the compiled code. As an example, consider
the fullsimpe case study:

$ stack build && stack exec fullsimple

The last command will compile and then execute the code present in src/Main.hs. In particular it
will search and exhibit counterexamples to the properties of interest.


