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Abstract
Property-based testing is a technique for validating code against
an executable specification by automatically generating test-data.
From its original use in programming languages, this technique has
now spread to most major proof assistants to complement theorem
proving with a preliminary phase of conjecture testing. We present
a proof theoretical reconstruction of this style of testing for rela-
tional specifications (such as those used in the semantics of pro-
gramming languages) and employ the Foundational Proof Certifi-
cate framework to aid in describing test generators. We do this by
presenting certain kinds of “proof outlines” that can be used to de-
scribe the shape and size of the generators for the conditional part
of a proposed property. Then the testing phase is reduced to stan-
dard logic programming search. After illustrating our techniques
on simple, first-order (algebraic) data structures, we lift it to data
structures containing bindings using λ-tree syntax. The λProlog
programming language is capable of performing both the gener-
ation and checking of tests. We validate this approach by tackling
benchmarks in the metatheory of programming languages coming
from related tools such as PLT-Redex.

1. Introduction
In this brief paper, we examine property-based testing (PBT) from
a proof theory point-of-view and explore some of the advantages
that result from exploiting that perspective.

1.1 Generate-and-test as bipoles
Imagine that we wish to write a relational specification for revers-
ing lists. There are, of course, many ways to write such a specifica-
tion but in every case, the formula

∀L : (list int)∀R : (list int) [rev(L,R) ⊃ rev(R,L)]

stating that rev is idempotent should be a theorem. More gener-
ally, we might wish to prove a number of formulas of the form
∀x : τ [P (x) ⊃ Q(x)] where both P and Q are given relational
specifications. Occasionally, it can be important in this setting to
move the type judgment x : τ into the logic of a formula by turning
the type into a predicate: ∀x[(τ(x)∧P (x)) ⊃ Q(x)]. Proving such
formulas can often be difficult since their proof may involve the
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clever invention of prior lemmas and induction invariants. In many
practical settings, such formulas are, in fact, not theorems since the
relational specification of P and/or Q can contain errors. It can be
therefore valuable to first attempt to find counterexamples to such
formulas prior to attempting a proof. That is, we might attempt to
prove formulas of the form ∃x[(τ(x) ∧ P (x)) ∧ ¬Q(x)] instead.
If a term t of type τ can be discovered such that P (t) holds while
Q(t) does not, then one can return to the specifications of P and
Q and revise them using the concrete evidence in t about how the
specifications are wrong. The process of writing and revising re-
lational specifications could be aided if such counterexamples are
discovered quickly.

The literature contains at least two ways to view Horn clause-
style relational specifications in proof theoretic terms. For example,
specifications such as

nat 0. plus 0 M P.
nat (s N) :- nat N. plus (s N) M (s P) :- plus N M P.

can be viewed as a set of first-order Horn clauses: one of these
formulas would be

∀N∀M∀P [plus N M P ⊃ plus (s N) M (s P )].

The proof search approach to encoding Horn clause computation
results in the structuring of proofs with repeated switchings be-
tween a goal-reduction phase and a backchaining phase [19]. The
notion of focused proof systems generalizes this notion of proof
construction in the sense that goal-reduction corresponds to the
negative phase: during this phase, the conclusion-to-premise con-
struction of proofs proceeds without needing to make any choices
(no backtracking). At the same time, the backchaining phase corre-
sponds to the positive phase: during this phase, proof construction
generally needs to consume some information from, say, an ora-
cle or to allow for some nondeterminism. The combination of a
positive phase and a negative phase is called a bipole. In this view
of logic programming, proof search involves proofs with arbitrary
numbers of bipoles. Comprehensive focusing systems exist for lin-
ear, intuitionistic and classical logics [15].

A different approach to the proof theory of Horn clauses in-
volves encoding Horn clauses as fixed points. For example, the
Prolog-style specification above can be written instead as the fol-
lowing fixed point definitions.

nat =µλNλn(n = 0 ∨ ∃n′(n = s n′ ∧+ N n′))

plus =µλPλnλmλp ((n = 0 ∧+ m = p) ∨
∃n′∃p′(n = s n′ ∧+ p = s p′ ∧+ P n′ m p′))

When using a focused proof system for logic extended with fixed
points, such as is employed in Bedwyr [2] and described in [1,
13], proofs of formulas such as ∃x : τ [P (x) ∧ ¬Q(x)] are a
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single bipole: when reading a proof bottom up, a positive phase
is followed on all its premises by a single negative phase that
completes the proof. In particular, the positive phase corresponds
to the generation phase and the negative phase corresponds to the
testing phase. From this description, it is conceptionally easy (as
one would expect) to construct an implementation of the testing
phase while it can be difficult to steer the generation phase through
a (possibly) great deal of nondeterminism. For example, the blind
exhaustive enumeration of possible counterexamples is generally
known to be ineffective. Significant sophistication must go into
crafting generators and assembling them.

1.2 Flexible test case generation via proof reconstruction
The foundational proof certificate (FPC) framework was proposed
in [9] as a means of defining proof structures used in a range of dif-
ferent theorem provers (e.g., resolution refutations, Herbrand dis-
juncts, tableaux, etc). The FPC framework was designed using fo-
cused proof systems as a kind of protocol: during the construction
of a positive phase, the proof checker could request specific infor-
mation from a proof certificate. In the general setting, proof certifi-
cates do not need to contain all the details required to complete a
formal proof. In those cases, a proof checker would need to per-
form proof reconstruction. For example, FPCs can be used as proof
outlines [5] since they can describe some of the general shape of
a proof: e.g., apply the obvious induction invariant and complete
the proof via the enumeration of all remaining cases). The proof
checker would attempt to fill in the missing details, either obtain-
ing a proof of the described shape or failing to do so. Here, we
propose to use FPCs as a language for describing generators. We
have experimented with writing proof checkers in both OCaml (as
an extension to Abella [3]) and λProlog that could be used to check
proof certificates and in the process steer the proof of the expres-
sion P (x) (and the corresponding typing expression, say, τ(x)).

As we shall illustrate, we have defined certificates that describe
families of proofs that are limited by the number of inference rules
that they contain, by their height, or by both. Using similar tech-
niques, it is possible to define FPCs that target specific types for
specific treatment: for example, when generating integers, only
(user-defined) small integers would be generated. Using a proof
reconstructing checker (such as is easy to do with a logic program-
ming system), the search space of proofs that a FPC describes for a
specific formula of the form ∃x : τ [P (x)∧¬Q(x)] can be directly
translated into a description of the range of possible witness terms
for this quantifier.

1.3 Lifting PBT to treat λ-tree syntax
Describing a computational task using proof theory often allows re-
searchers to lift descriptions based on first-order (algebraic) terms
to descriptions based on λ-tree syntax (a specific approach to
higher-order abstract syntax). For example, once logic program-
ming was given a proof search description, it was natural to gener-
alize the usual approaches to logic programming from the manipu-
lation of first-order terms (Prolog) to the manipulation of λ-terms
(λProlog) [17]. Similarly, once certain model checking and induc-
tive theorem provers were presented using sequent calculus in a
first-order logic with fixed points [1, 13], it was possible to incor-
porate λ-terms syntax in generalizations of model checkers, as in
the Bedwyr system [2], and in generalizations of theorem provers,
as in Abella [3].

The full treatment of λ-tree syntax in a logic with fixed points
is usually accommodated with the addition of the∇-quantifier [12,
18]. While the ∇-quantifier has had significant impact in several
reasoning tasks (for example, in the formalized metatheory of the
π-calculus and λ-calculus) an important result about ∇ is the fol-
lowing: if fixed point definitions do not contain implications and

negations, then exchanging occurrences of ∀ and ∇ does not af-
fect what atomic formulas are proved [18, Section 7.2]. Since we
shall be limiting ourselves to Horn-like recursive definitions, the
λProlog implementation of ∀ will also implement∇.

This direct treatment of λ-terms within the PBT setting will al-
low us to apply property-based testing to a number of metapro-
gramming tasks. After describing more details of how PBT can be
encoded in proof theory (and logic programming) in the next sec-
tion, we discuss in Section 3 the treatment of metaprogramming.

2. Basic approach
The setup follows [16]; we introduce a simple specification logic,
which in this case is basically the usual Prolog vanilla meta-
interpreter, save for interpreting∇ as Π, which drives the derivation
of our object logic; the latter is represented as Horn-like clauses by
a two-place predicate prog relating heads and bodies, built out
of object-level logical constants (tt, or, and, nabla) and user-
defined constructors for predicates. For example, to generate lists
of as and bs and compute the reverse a list, we have the following
prog clauses:

prog (is_elt a) tt.
prog (is_elt b) tt.
prog (is_eltlist null) tt.
prog (is_eltlist (cons X XS))

(and (is_elt X) (is_eltlist XS)).
prog (rev null null) tt.
prog (rev (cons X XS) RS)

(and (rev XS SX) (append SX (cons X null) RS)).

Suppose we want to falsify the assertion that the reverse of a list
is equal to itself. The generation phase is steered by the predicate
check, which uses a certificate (its first argument) to produce can-
didate lists up to a certain depth qheight. The testing phase per-
forms deterministic computation with the meta-interpreter interp
and then negating the conclusion using negation-as-failure (NAF),
where the call to NAF is safe since YS will be ground:

cexrev XS YS :- check (qgen (qheight 3)) (is_eltlist XS),
interp (rev XS YS), not (XS = YS).

The FPC kernel is presented in Figure 1. Each object-level con-
nective is interpreted as λProlog code, and user-defined construc-
tors are looked up in prog and unfolded. This is driven by the
meta-interpreter interp (omitted). To it, check adds a certificate
term and calls to expert predicates on said term (except nabla,
which is transparent to the experts). Experts decide when the com-
putation proceeds — producing certificates for the continuations
— and when it fails. Here the complexity of generated candidates
is bound by limiting unfoldings, either by depth (qheight, pro-
ducing shallow terms), number of constructors (qsize, producing
small terms), or both by pairing (not shown here, but see [6]).

3. PBT for metaprogramming
To showcase the ease with which we handle searching for coun-
terexamples in binding signatures we encode a simply-typed λ-
calculus augmented with constructors for integers and lists, follow-
ing the PLT-Redex benchmark from http://docs.racket-lang.
org/redex/benchmark.html. The language is as follows:

Types A,B ::= int | ilist | A→ B
Terms M ::= x | λx:A. M |M1 M2 | c | err
Constants c ::= n | plus | nil | cons | hd | tl
Values V ::= c | λx:A. M | plus V

| cons V | cons V1 V2
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check Cert tt :- tt_expert Cert.
check Cert (and G1 G2) :- and_expert Cert Cert1 Cert2, check Cert1 G1, check Cert2 G2.
check Cert (or G1 G2) :- or_expert Cert Cert’ LR, ((LR = left, check Cert’ G1); (LR = right, check Cert’ G2)).
check Cert (nabla G) :- pi x\ check Cert (G x).
check Cert A :- unfold_expert Cert Cert’, prog A G, check Cert’ G.

tt_expert (qgen (qsize In In)).
tt_expert (qgen (qheight _)).
or_expert (qgen (qsize In Out)) (qgen (qsize In Out)) _.
or_expert (qgen (qheight H)) (qgen (qheight H)) _.
and_expert (qgen (qsize In Out)) (qgen (qsize In Mid)) (qgen (qsize Mid Out)).
and_expert (qgen (qheight H)) (qgen (qheight H)) (qgen (qheight H)).
unfold_expert (qgen (qsize In Out)) (qgen (qsize In’ Out)) :- In > 0, In’ is In - 1.
unfold_expert (qgen (qheight H)) (qgen (qheight H’)) :- H > 0, H’ is H - 1.

Figure 1. check is the proof checking kernel: it is parametrized by four experts.

The rules for dynamic and static semantics are given in Figure 2,
where the latter assumes a signature Σ with the obvious type dec-
larations for constants. Rules for plus are omitted for brevity.

The encoding in λProlog is pretty standard and also omitted:
we declare constructors for terms, constants and types, while we
carve out values via an appropriate predicate. A similar predicate
characterizes the threading in the operational semantics of the err
expression, used to model run time errors such as taking the head
of an empty list. We follow this up (see the bottom of Figure 2)
with the static semantics (predicate wt), where constants are typed
via a table tcc. Note that we have chosen an explicitly context-
ed encoding of typing as opposed to one based on hypothetical
judgments such as in [16]: this choice makes it possible to avoid
using implications in the body of the typing predicate and, as a
result, allows us to use λProlog’s universal quantifier to implement
the reasoning level∇-quantifier.

Now, this calculus enjoys the usual property of subject reduction
and progress, where the latter means “being either a value, an error,
or able to make a step.” And in fact we can fairly easily prove
those results in a theorem prover such as Abella. However, the case
distinction in the progress theorem does require some care: were it
to be unprovable given a mistake in the specification, it would not
be immediate to localize where the error is. On the other hand, one
could wonder whether our calculus enjoys the subject expansion
property — the alert reader will undoubtedly realize that this is
highly unlikely, but rather then wasting time in a proof attempt, we
search for a counterexample and find:

cexsexp M M’ A :- check (qgen (qsize 8 _)) (step M M’),
interp (wt null M’ A),
not (interp (wt null M A)).

A = listTy
M’ = c nl
M = app (c hd) (app (app (c cns) (c nl)) (c _))

Other queries we can ask: are there untypable terms, or terms that
do not converge to a value?

As a more comprehensive validation we addressed the nine
mutations proposed by the PLT-Redex benchmark, to be spotted
as a violation of either the preservation or progress properties. E.g.,
the first mutation introduces a bug in the typing rule for application,
matching the range of the function type to the type of the argument:

Γ `Σ M1 : A→ B Γ `Σ M2 : B

Γ `Σ M1 M2 : B
T-APP-B1

The given mutation makes both properties fail:

cexprog M A :- check (qgen (qsize 6 _)) (wt null M A),
not (interp (progress M)).

A = intTy
M = app (c hd) (c (toInt zero))

cexpres M M’ A :- check (qgen (qsize 8 _)) (wt null M A),
interp (step M M’),
not (interp (wt null M’ A)).

A = funTy listTy intTy
M’ = lam (x\ c hd) listTy
M = app (lam (x\ lam (y\ x) listTy) intTy) (c hd)

Table 1 reports the tests, performed under Ubuntu 16.04 on a
Intel Core i7-870 CPU, 2.93GHz with 8GB RAM. We time-out
the computation when it exceeds 300 seconds. We list the results
obtained by λProlog (λP) under Teyjus [20], the counterexample
found, and a brief description of the bug together with Redex’s
difficulty rating (shallow, medium, unnatural). The column αP lists
the time taken by αProlog using NAF, which is not always the
best technique [8], but it is the same we use. αProlog being an
interpreted language, whereas Teyjus a compiler level themselves
out, since we use meta-interpretation. The results are essentially
indistinguishable, save for bugs 4, 5 and 6: in the first, which is
surprisingly hard to find, αProlog times out, while we comfortably
beat the time limit. αProlog flunks number 5, which is immediate
for us. Finally in bug 6 it needs to explore the search space up to
level 11, while we can leverage the FPC ability to use the qsize
metric.

4. Related work
Property-based testing is a technique for validating code against an
executable specification by automatically generating test-data, typ-
ically in a random and/or exhaustive fashion. From its original use
in programming languages [10], this technique has now spread to
most major proof assistants [4, 22] to complement theorem proving
with a preliminary phase of conjecture testing. We do not have the
space for a comprehensive review, for which we refer to [7], but we
mention two of the main players w.r.t. metatheory model checking:
PLT-Redex [11] is an executable DSL for mechanizing semantic
models built on top of DrRacket with support for random testing
à la QuickCheck; its usefulness has been demonstrated in several
impressive case studies [14]. However, Redex has limited support
for relational specifications and none whatsoever for binding sig-
nature. This is where αCheck [7] comes in. The tool adds on top
of the nominal logic programming language αProlog a checker for
relational specifications as we do here. One of the implementation
techniques is based as well on NAF, as far as testing of the con-
clusion is concerned. The generation phase is instead “wired in”
via iterative-deepening search, based on derivation height. In this
sense αCheck is less flexible than the FPC-based architecture that
we propose here, since it can be seen as a fixed choice of experts.
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hd (cons M1 M2) −→M1
E-HD

tl (cons M1 M2) −→M2
E-TL

λx : A. M V −→ [x 7→ V ]M
E-ABS

M1 −→M ′
1

M1 M2 −→M ′
1 M2

E-APP1
M −→M ′

V M −→ V M ′ E-APP2

`Σ err : A
T-ER

Σ(c) = A

`Σ c : A
T-K

x : A ∈ Γ

Γ `Σ x : A
T-VAR

Γ, x : A `Σ M : B

Γ `Σ λx : A. M : A→ B
T-ABS

Γ `Σ M1 : A→ B Γ `Σ M2 : A

Γ `Σ M1 M2 : B
T-APP

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

prog (wt _ err _) tt.
prog (wt _ (c M) A) (tcc M A).
prog (wt Gamma M A) (memb (bind M A) Gamma).
prog (wt Gamma (lam M Ax) (funTy Ax A)) (nabla x\ wt (cons (bind x Ax) Gamma) (M x) A).
prog (wt Gamma (app M N) A) (and (wt Gamma M (funTy B A)) (wt Ga N B)).

Figure 2. Static and dynamic semantics of the Stlc language.

bug check αC λP cex Description/Rating

1 preservation 0.3 0.05 (λx:int. λy:ilist. x) hd range of function in app rule
progress 0.1 0.02 hd 0 matched to the arg. (S)

2 progress 0.27 0.06 (cons 0) nil value (cons v) v omitted (M)
3 preservation 0.04 0.01 (λx:int. cons) cons order of types swapped

progress 0.1 0.04 hd 0 in function pos of app (S)
4 progress t.o. 207.3 ((plus 0) ((cons 0) nil)) the type of cons return int (S)
5 preservation t.o. 0.67 tl ((cons 0) nil) tail reduction returns the head (S)
6 progress 24.8 0.4 hd ((cons 0) nil) hd reduction on part. applied cons (M)
7 progress 1.04 0.1 hd ((λx:ilist. err) nil) no eval for argument of app (M)
8 preservation 0.02 0.01 (λx:ilist. x) nil lookup always returns int (U)
9 preservation 0.1 0.02 (λx:ilist. cons) nil vars do not match in lookup (S)

Table 1. Stlc benchmark list

Finally, more distant cousins in the logic programming world
are declarative debugging [21] and the Logic-Based Model Check-
ing project at Stony Brook (http://www.cs.sunysb.edu/~lmc).

5. Conclusion and future work
We have described some work-in-progress that uses standard logic
programming techniques and some recent developments in proof
theory to design a flexible framework for PBT. Given its proof the-
oretic pedigree, it was possible to extend PBT to the metaprogram-
ming setting.

Figure 1 specifies only two certificate formats: one that limits
the size and one that limits the height of a proof. We have also im-
plemented another certificate format that implements both restric-
tions at the same time. It is easy to code other certificates: by read-
ing random bits from an external source of entropy, certificates can
describe randomly organized proofs (and, hence, witness terms).
Certificates can also be organized to consider only allowing small
proofs for one type but random for another type: thus, one could
easily design a certificate that would explore randomly generated
lists containing just, say, the integers 0 and 1.

While λProlog is used here to discover counterexamples, one
does not actually need to trust the logical soundness of λProlog
(negation-as-failure makes this a complex issue). Any counterex-
ample that is discovered can be output and used within, say, Abella
to formally prove that it is indeed a counterexample. In fact, we
plan to integrate our take on PBT in Abella, in order to support
both proofs and disproofs.
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