
Regular Search Spaces and Constructive
Negation

ALBERTO MOMIGLIANO, Department of Philosophy, Carnegie Mellon
University, 15213 Pittsburgh PA, USA.
E-mail: am4e@cmu.edu

MARIO ORNAGHI, Dipartimento di Scienze dell'Informazione, Universita'
degli studi di Milano, Via Comelico 39/41, Milano, Italy.
E-mail: ornaghi@imiucca.csi.unimi.it

Abstract
The aim of this paper is to show the fruitfulness and fecundity of the authors' proof-theoretic analysis of logic pro-
gramming (both for definite and normal programs). It is based on a simple logical framework that goes under the
name of regular search spaces. The challenge faced here is to give a treatment in proof-theoretic terms of the issue
of negation, which has been one of the toughest problems that has plagued logic programming from its very begin-
ning. While negation-as-failure (NF) has been overwhelmingly the more widespread answer, its intrinsic limitations
have made it a rather unsatisfactory solution. In the present paper it is first contended that the notion of regularity
offers a better understanding of the traditional theory of NF, and second a firm yet very simple and natural basis for a
form of constructive negation, in the sense of Chan, Stuckey and Harland. A version of constructive negation is pre-
sented, based on the notion of regular splitting, a transformation technique where the failure axiom(s) of a predicate
occurring negatively in a program are split into new clauses according to a covering of the underlying signature.

Keywords: Logic programming, proof-theory, negation-as-failure, constructive negation, search spaces.

1 Introduction

The aim of this paper is to show the fruitfulness and fecundity of the proof-theoretic analysis
of logic programming developed in [33] (both for definite and normal programs). It is based
on a simple logical framework that goes under the name of regular search spaces. Here many
logics can be expressed and, provided they are shown to be regular, i.e. they satisfy some
elementary closure properties, they are then guaranteed to enjoy the very features that make
pure Prolog a feasible and successful implementation of a computational logic, namely the
Horn fragment.

Some of the tools that we are going to use are the concept ofaxiom application rule (AAR),
which can be seen as an abstraction of an inference step of a logic programming interpreter
(or more generally as the atomic nucleus of rule-based systems) and of most general proof-
tree (mgpt), which is the analogue of a SLD-derivation. Mgpts are in fact based on the notion
of AAR, which easily generalizes to various definitions of clauses and goals. Finally, in the
background, all is connected by the notion of regular search space, which plays the role of a
Prolog-like search space.

The challenge that we face here is to give a treatment in our proof-theoretic terms of the is-
sue of negation, which has been one of the toughest problem that has plagued logic program-
ming from its very beginning. While negation-as-failure (NF) [10] has been overwhelmingly

J. Logic Computat, Vol. 7 No. 3, pp. 367-403 1997 © Oxford University Press

368 Regular Search Spaces and Constructive Negation

the more widespread answer (see Section 6), its intrinsic limitations have made it a rather un-
satisfactory solution. One of the more questionable features is that it is incapable of providing
logically justified answers to open queries, consequently restricting negation to be just a test,
rather than a logical operator.

In the present paper we will first contend that the notion of regularity offers a better under-
standing of the traditional theory of NF and second a firm, yet very simple and natural basis
for a form of constructive negation, in the sense of [8,49, 18], a trend of studies recently pur-
sued aiming to remedy some ofNFs maladies. In particular, we shall be concerned with the
transformational approach initiated in [5], also known as intensional negation [26, 30, 7].

We will introduce an axiom-application rule F which allows one to interpret SLDNF-tiees
as search-trees for F-proofs of negative goals. Due to this analysis of NF, the soundness is-
sue related to the safeness condition on the selection function is shown to originate from (an
analogue of) the usual proviso on parameters of the 3-left and V-right rule in the sequent cal-
culus [38]. More importantly, the analysis clarifies the intrinsic incompleteness of NF due, to
a great extent, to the fact that the F rule gives rise to a non-regular search space.

We contend that the incapability of answering negative open queries is due to the non-
regularity of SLDNF-search trees. We will show that regularity can be achieved through a
splitting of the given program, obtaining in this way a regular system, where it is possible to
answer negative open queries. Splitting is a simple transformation technique where the failure
axiom(s) of the predicate definition occurring negatively in the source program are split into
new clauses according to a covering [17,30] of the underlying signature and then executed in
an opportune inference system. This is similar to the method in [5] and ancestors (see Section
6 for a comparison).

We want to stress at this point that our interest lies mainly in showing the versatility and the
adaptability of our approach—having digested a few simple initial definitions—rather than
keeping up with front-line research on negation in logic programming: in particular we shall
deal only marginally with new developments in the field about constructive negation, com-
pletion, answers sets and completeness of NF (see for example [44,6] and the recent survey
[3]). Similarly, our review of related work is meant to help the reader to situate and compare
our approach to the aforementioned issues, rather than detailed discussions about its edge over
other proposals.

This paper, therefore, has in part a pedagogical vein. Our long-term intent is to show that
many issues in the theory of logic programming, starting from NF, which are well-known but
not necessarily v/ett-understood, have a very natural, elegant, concise and stimulating proof-
theoretic reading. Besides, the latter can provide the researcher with useful tools that are in-
deed relevant to current research (see, for example, Stack's thesis [47] and following papers).
Note that there are several points where we move from our reconstruction of folk material to
the presentation of new ideas and connections.

The paper is organized as follows: in Section 2 we review the proof-theory of logic pro-
gramming, from the abstract point of view formulated in [33] down to a reconstruction of
SLD-resolution. Section 3 formulates the theory of Regular AA/?-Systems. Section 4 deals
with the proof-theory of NF and the related soundness and completeness problem. Section
5 proposes regular splitting as a solution to the problem of evaluating open negative queries.
Eventually we give a version of the method in the positive fragment of pure Prolog and in
Section 6 we compare our approach with other treatments of negation in logic programming.
In the Appendix we detail the proof of the Finite Failure Theorem (4.4), stated in Section 4.

Regular Search Spaces and Constructive Negation 369

2 Systems based on axiom-application rules

Our view of an abstract1 logic programming system is that of an idealized interpreter endowed
with rules—the inference mechanism—that apply axioms—the program—starting from a goal
and searching for a proof. We formulate this approach in all its generality and we exemplify
it with some systems that are related to SLD(7VF)-resolution. We assume some familiarity
with logic programming [27, 2] and basic proof theory [38, 42, 16].

2.1 AAR-systems

An AAfl-system is a triple (Q, .4, TV) where:

1. Q is a set of admissible goals. In this paper those will be literals, but more general forms
could be used (see [33]). Goals are therefore distinct from Prolog goals, denoted as usual
by the sequence <- L\,..., Ln.

2. A is a set of admissible axioms. For example, that could be (the universal closure of)
definite or normal clauses, the completed definitions of the predicates of a program, or
more general kinds of axioms (see [33]).

3. 7L is a set of axiom application rules. A rule R € 72- is any relation from goals and axioms
to sequences of goals, including the empty sequence A, i.e. R C (Q x A) x Q*.

We shall say that G i ; . . . ; Gn € R(G, Ax) for those sequences of goals G\\...;Gn such
that {{G, Ax},Gi;...; Gn) G R (namely R(G, Ax) is a set of sequences of goals). Using
semicolons to separate goals as well as axioms, we will draw this as

G\\- •• ;Gn; Ax

When A € R{G, Ax), we call Ax a fact and we write

A program V is a set of axioms from A.

NOTATION 2.1

If A is an atom, neg(A) = -<A; otherwise neg(->A) = A. Capital letters will denote logical
variables, while lower case will be reserved for terms, quantified variables and eigenvariables
[38]. Recall that the latter (often called parameters) are variables whose only possible sub-
stitutions are capture-freeing renaming. V(M) (3(M)) will denote the universal (existential)
closure of M, whose free variables are bound by universal (existential) quantifiers. For the
sake of mental hygiene, we will tacitly confuse terms with tuples of terms: for example Q.y
will either denote a (possibly empty) list of quantified variables, or a single occurrence binding
the variable y. It will be apparent from the context which is intended.

We now introduce, as examples, the systems we will be more interested in.

'The notion of abstract logic programming language was introduced some years ago by Miller et al [31) as
one satisfying some constructive provability conditions, interpreted as search instructions; in this respect the two
notions are complementary, since basic in our approach is the accent on regularity as an analysis of the conditions
for completeness in abstract search spaces.

370 Regular Search Spaces and Constructive Negation

• The P-system contains a single rule P: the admissible goals are literals and it applies ax-
ioms of the form V(Vy(Li A • • • A Ln) -* M), where M, L\,..., Ln are literals and y
may appear in Lj but not in M. Note that the presence of universal quantifiers in the body
of clauses is a mild extension of the Horn format in the direction of Harrop formulae [31].
If n = 0, then the axiom is V(M). The rule P is defined as follows. For every substitution
6 renaming y with eigenvariables:

ftLi;... ;0L B G ?{dM,V{Vy(Ll A • • • A L») -> M)) .

When we need to differentiate in the P-system applications of rules to positive and nega-
tive goals, we shall use the obvious notation P + , P~.

An application of P with positive conclusion is, for example:

->sum(v,v,X); Vx(Vz-isum(2,z,x) —¥ odd(x)) . + .
~o~dd{X) ()

where an eigenvariable v has been introduced for z.

The P rule can be shown to be admissible in minimal logic: its instances are derivable
in natural deduction, along the following lines, where the vertical dots allude to a closing
branch for the assumption -<sum(v, v,X): observe the interplay among the different type
of variables:
- the eigenvariable v has uniformly substituted z
- X is a logical variable
- x is universally quantified.

-<sum(v,v,X) y i Vx(Vz-i5um(z, z, x) ->• odd(x)) w £

Vz.-<sum(z,z, X) Vz-<sum(z,z,X) —> odd(X) _
odd(X)

The F-system. We allow rules in which some proper (i.e. non-logical) axiom is implicitly
used. In Clark's equality theory [10] we can derive the following failure rule F to apply
failure axioms of the form:

Fax(p) : Vx(p(x) -V 3y((i = tx A Lt) V • • • V (x = tn A £,„))),

related, as we will see, to the only-if part of the completion axiom for a predicate definition

i,),.. .\neg{akLik) 6 F(- .p(a) ,Fax(p)) ,

where a is a term which unifies only with t M , . . . , t , t with idempotent mgus o\,... a t .
Moreover, if ahLlh contains, modulo renaming, some of the existentially quantified y,
those variables must be new (w.r.t. a) eigenvariables.

2 It is possible to present an alternative multiple goals characterization of SLDW-resoIution [33]. This AAR-
system, based on the standard notion of completion, can be enriched by other rules, for instance connected to model
elimination [48], that cannot be formulated in the other (weaker) system.

Regular Search Spaces and Constructive Negation 371

Examples of applications of F are, given the standard program for the member predicate
and its failure axiom Fax(member):

member (X,X.XS).
member(X,Y.YS) : - member(X,YS).

Vx,xs(member(x,xs) -* 3y,ys,z((x = y Axs = y.ys) V
(x = z A xs = y.ys A member(z, ys)))

Fax(member) -<member(l, W) Fax(member)
-^member (X, nil) ^ ' -member(1,2.W)

In the first case unification fails, hence A € ¥{->member(X,nil),Fax{member)). In
the second case the mgu [z/1, y/2, ys/ iy] yields:

-miember(l,W) E F (-member (1,2.W), Fax (member)),

where no eigenvariable occurs in -<member(\, W), since z, y and ys have been replaced
by the mgu. See Example 3.22 for a different situation.

• The PF-system contains, guess what, the rules P and F.

The set of proof-trees T(G, A, TV} of an AAfi-system (Q, A, 71) is inductively defined be-
low, with II :: G as our linear notation for a proof-tree II with root G:

DEFINITION 2.2
Every G G Q is a proof-tree. If FTi :: G\,... , IIn :: Gn are proof-trees and G\;...; Gn 6
R(G, Ax), then the following is also a proof-tree:

iii n n

G i ; . . . G n ; Ax (R)
G

We say that a goal is an assumption of a proof-tree if it is a minor premiss in some leaf. The
axioms of a proof-tree are those appearing as major premisses. The root of a proof-tree is
called its consequence.

EXAMPLE 2.3

To illustrate the latter notion, we give a F-proof-tree with consequence -<member(l, [2,3]),
assumption -^member(\, nil) and two occurrences of the axiom Fax (member).

->mem6er(l,m/) Fax(member)

-imember(\, [3]) Fax(member)i ^

->mem6er(l,[2,3])

DEFINITION 2.4

A proof-tree is z. proof oi G iff G is its consequence and it has no assumption. Otherwise it
is a called a partial proof-tree. If the axioms of a proof-tree belong to a program V C A, we
say that it is a proof-tree with axioms from V. The height of a proof-tree is the height of its
longest branch.

372 Regular Search Spaces and Constructive Negation

2.2 P-system and SLD-resolution

To a definite clause C we associate an axiom Ax(C) and to a program P the set Ax{P) of the
axioms which correspond to its clauses, in the obvious way. For example, let us consider the
program SUM for computing the sum, containing the following clauses S\, S2:

si : sum(X,0,X).
s2 : sum{X, s{Y), s(Z)) : -sum(X, Y, Z).

The associated axioms Ax(SUM) are:

Vx(sum(x,0,x))
Ax(s2) : Vx, y, z(sum(x,y,z) ->• sum(i, s{y), s(z))).

SLD-derivations corresponds to the inferences in the P-system, with the following restric-
tions: no universal quantifier occurs in the body of a clause and no negative literal is involved.
The set of proof-trees of the P-system is closed under substitution and the application of a
substitution to a proof-tree II is denoted by OH.

According to Theorem 2.6 we associate continuations of proof-trees to SLD-steps.

DEFINITION 2.5 (Continuation)
Let Ax(C) = V(yli A . . . A An -> B) be an axiom corresponding to a clause C and

. . . H ...

n
be a proof-tree with an assumption H s.t. 6B = 6H, for some substitution 6. The continuation
of II selecting H and applying Ax(C) w.r.t. 6 is the proof-tree:

0Al;-\0An Ax(C)
... m...

en
THEOREM 2.6 (Soundness and completeness of the P-system)
Let P be a definite program and A an atom:

(a) If there is a SLD-refutation for P u {«- A) with answer substitution 6, then there is a proof
II : : 8A in the P-system, using only axioms from Ax(P).

(b) If there is a proof II :: 9A in the P-system with axioms from Ax(P), then there is a
SLD-refutation of P U {<— A) and the answer substitution 5 is such that 0 — a6, for a
suitable a.

PROOF. Point (b) follows from the validity of the P-system w.r.t. classical first order logic
([27], Theorem 8.6).

Point (a) can be proved as follows. Let Go, G\,..., Gm (with clauses C\,..., Cm and
substitutions3 9i,.. .,0m) be a refutation, with Go = «- A. For 0 < i < m, let 6, be the
composition of the 0\,..., Oi and <- A%1,..., Aih be the atoms in the goal d; starting with
i = 0, we associate to G o , . . . , G, a proof-tree 11; :: 8{A with assumptions Atl,..., Aih., as
follows:

3NoCc thai the proof does not rely on 6 1 , . . . , f lm being mgus.

Regular Search Spaces and Constructive Negation 373

Step 0. Associate A to Go-
Step i+1. Let II :: 6tA be the proof-tree associated to G o > . . . , G , at step i and let G1+i

be obtained applying G,+i to the selected atom Ani, with mgu #;+ i ; build the continuation of
Hi :: 6iA selecting Ant and applying Ax(Ci+i) w.r.t. 6t+\.

The last goal G m is empty, hence the last proof-tree I l m :: 6mA has no assumptions, i.e. it
is a proof, and <5m is the answer substitution. I

3 Regular AAR-systems

Now we approach the analysis of AAR-systems in an abstract setting, from the point of view
of proof-search. This is quintessential to understand the intrinsic properties of logic program-
ming and to evaluate any departure from SLD-resolution as its kernel. In particular, this sec-
tion is a fundamental preliminary to our proof-theoretic treatment of NF inasmuch as it intro-
duces the key notion of similarity and regularity together with the central results of the theory.

The search-space of an A/\/?-system can be organized as a search-tree, where nodes are (par-
tial) proof-trees and arcs (search steps) are continuations (see Definition 2.5 and Theorem 2.6).
A leaf that contains a proof is a success node, and a leaf that contains a partial proof-tree is a
failure node. Finite failure can be characterized as a property of the set of failure nodes.

In general, search in the complete tree is intractable. One of the problems is computing the
right substitutions. It can be dealt with in the following way.

For the P-system, the subsumption ordering [23] on first-order terms can be lifted to proof-
trees [19], and most general proof trees (mgpts) are defined as the maximal elements w.r.t. this
ordering. In 'good' systems search can be pursued only in the subspace of the mgpt, through
most general continuations (mgcs); mgcs correspond to SLD-steps in logic programming sys-
tems. The completeness of the search in the subspace of the mgpt depends on a property of
the search space, that we call regularity. The idea of regularity, in its more general setting,
can be outlined as follows.

A subspace is obtained through a suitable equivalence relation among proof-trees, i.e. it
is built by an appropriate quotientation of the (entire) search space. Regularity is a property
of the equivalence classes. It ensures that a regular subspace is success-complete, that is for
every successful path from a goal G to a proof II in the complete search space, the subspace
contains at least one path from the equivalence class of G to the one of II.

Thus regularity entails that a search strategy working on representatives of the equivalence
classes will not miss success nodes. Note that success-completeness deals with the complete-
ness of a search strategy w.r.t. a given proof system, not with the one of the proof system w.r.t.
some logic; the latter is to be studied by different (traditional) means.

3.1 Systems closed under substitution

Properties of substitutions, or more properly of instantiations, will turn out to be central in our
treatment. Hence we have to restrict to sets Q of goals for which a notion of substitution as an
answer/result of a computation makes sense. Assuming that the application of a substitution
to a goal is well-defined, it is clear how to extend it to trees. We suppose, as well, that axioms
and rules are not affected by substitutions.

Note that, under the more general version that we are developing, Ft may belong to
T(G, A, TV), while 0FI does not. To ensure this, we introduce the following:

374 Regular Search Spaces and Constructive Negation

DEFINITION 3.1
We say that an AAR-syslem (Q, A, 72) is closed under substitution if, for all 6,G £ Q entails
6G eQ and, for all R £ 72., Ax G A and G 6 G, R{0G, Ax) = 9R(G, Ax).

As mentioned, the P-system is closed under substitution. As far as the F(P)-system is
concerned, the situation is more complicated as discussed in subsection 3.5.

One easily sees that, if (G, A, 72.) is closed under substitution, so is T(G, A, 72.), i.e. II 6
T(G,A,1l) entails9U € T{G,A,Tl).

This allows us to introduce the following pre-ordering (intuitively to be read as 'IIi is less
general or more instantiated than 112') and equivalence relation among proof-trees.

DEFINITION 3.2 (Subsumption ordering for proof-trees)
• IIi < n 2 iff there is a 6 such that 1^ = 9U2.

• Ui = n 2 iff rii < n 2 and n 2 < iiy.

Note that the induced equivalence relation on proof-trees corresponds to identity of trees
modulo renaming of variables.

We will be mainly interested in most general proof-trees, defined as follows.

DEFINITION 3.3 (Mgpt)
II* isamost general proo/-free if it is a maximal element w.r.t. <,thatis, for every 11,11* < II
entails II = 11*.

3.2 Search spaces for AAR-systems

Now, let us consider how we could approach the following search problem in a Prolog-like
way, where (finite) sets of axioms are programs and the desired outcome of the computation
are answer substitutions.

Let V be a program and G G ? a goal: search for a proof II :: 6G with axioms from
V, for some substitution 6.

If a proof (i.e. a proof-tree without assumptions) II :: 6G exists, we say that 8 is an answer
substitution for G w.r.t. V. If, on the other hand, every proof-tree II :: 6G has assumptions,
we say that the goal G fails w.r.t. V.

First of all, we characterize our complete search space through the following notion of one-
step continuation, which generalizes Definition 2.5.

DEFINITION 3.4

Given G G Q, Ax € V and R € 71, we say that Ax can be applied to G by R using 6
iff G\;...; Gn € R(6G, Ax). Given a proof II with at least one assumption G, the above
application gives rise to a one-step continuation, as follows:

G^-^Gn Ax

. . . OG... {R>

en
Iteration yields many-step continuations. There is a more abstract alternative characteriza-

tion (illustrated in Figure 1):

DEFINITION 3.5

Call II' an initial subtree of II iff II' is a subtree of II and they have the same root. Then Il2 is
a continuation of ITj, denoted 111 •< Il2 , iff there is an initial subtree II3 of II2, s.t. II3 < Oi.

Regular Search Spaces and Constructive Negation 375

n2

en,,

FIG. 1. Alternative characterization of continuation

Note that Oi < FI2 implies IIi -< II2. In this case we will speak of the trivial continuation.

PROPOSITION 3.6

For the non-trivial case, Oi •< IT2 iff II2 is a many-step continuation of Oi.

One immediately sees that G has an answer substitution 6 w.r.t. a program V iff there is a
continuation II :: 6G of the 0-height proof-tree G, such that n is a proof. Then our search
problem can be restated as follows:

Let T(G, A, 11) be the set of proof-trees of a fixed A4/?-system. Let T{V) C T(Q, A, K)
be the (sub)set of the proof-trees with axioms from V and T(P, G) C T(V) be the (sub)set
of the continuations of G. The •< relation is easily seen as a pre-ordering on each of those
sets. As hinted above, to obtain a partial ordering we have to take the quotient T(V)/ =
(i.e. consider proof-trees modulo variable renaming). Finally, take the po-set (that through
standard duplications can be treated as a tree with root G):

(T(V,G)/=,*).

The leafs are (equivalences classes) of proof-trees which have no continuation; in particular,
a success node is a leaf containing a proof. Otherwise, they axe failure nodes. In particular,
(T(P, G)/ = , •<) is failed iff every leaf is a failure node (see Section 3.4 for more on that).

The po-set (T(P, G)/ =, •<) is the complete search space we mentioned above and it is the
starting point for our analysis of regularity. It contains all the proof-trees (modulo renaming)
and our search problem corresponds to the search of success nodes in such a tree.

For every node [II], where square brackets denote the equivalence class witnessed by n,
[IT] is a (non-trivial) child of [FI] iff the former is a one-step continuation of the latter.

According to Definition 3.4, a one-step continuation is parametrized by a 4-tuple
(G,Ax,R,0). Therefore sequences ((Go,AxQ,Ro,9a)),..,(Gn,Axn,Rn,6n)) corre-
spond to non-trivial paths in the tree. Thus, in general, we may have to backtrack on four
dimensions (choices of {Gk, Aik, Rk, Ok)). Moreover, due to the presence of substitutions,
even using a finite set of axioms and rules, a node may have infinitely many children.

Consequently it is desirable to eliminate at least the need to backtrack on substitutions.
This is what is achieved by first-order resolution, thanks to the existence of most general uni-
fiers. Moreover, SLD-resolution enjoys the independence of the selection function [27]. In
our model this is reflected by Proposition 3.14.

It could be expected that the elimination of some dimension of backtracking might cause
success-incompleteness of a search strategy. SLD-rcsolution is success-complete, but, as we
will see, it becomes success-incomplete when constructive negation4 is considered.

* Constructive in the sense of being provable in a constructive logic from the completion—this only partially co-
incides with the use of the term in the literature [8, 9, 49].

376 Regular Search Spaces and Constructive Negation

To (re)achieve success-completeness, we have to accept, in a first approximation, the re-
introduction of the dreadful dimension of backtracking on substitutions. As shown in [33],
the possibility of using a success-complete resolution method analogous to SLD-resolution
depends on the property of regularity of the search space (T(P, G)/ =, •<). The treatment is
based on the notions of similarity. In the next subsection we recall the main definitions and
results. More details and proofs can be found in [33].

3.3 Regular search spaces

In our model the possibility of using a resolution-like method corresponds to the computation
of most general continuations, among the (possibly infinite) similar continuations, where sim-
ilarity is a suitable equivalence relation among proof-trees.

To informally motivate the notion of similarity, let us consider a path in the search tree
(T{V,G0)/=,<):

((Go, Ax0,Ro,Oo), • • •, (Gn, Axn,Rn,On)).

Let us call similar two paths determined by the same sequence of axioms and rules, but possi-
bly by different sequences of substitutions. Two proof-trees are similar if they can be obtained
by similar paths.

Now, suppose that every set of similar proof-trees contains a most general proof-tree sub-
suming the others: it is apparent that a Prolog-like (idealized) interpreter will preferably com-
pute on this one, forget about the others and in particular avoid backtracking on the selection of
substitutions. The problem is to achieve success-completeness, that is no success node should
be lost in this way. To study success-completeness in its generality, it is convenient to formu-
late similarity in a more abstract way, as a structural property of proof-trees:

DEFINITION 3.7

An axiom/rule-occurrence in a proof-tree II is a triple (p, Ax, R) such that p is a path in II from
the root to a node containing an axiom Ax applied by a rule R. We say that two proof-trees
111. IIj are similar, written Oi ~ n 2 , if they have the same (non-empty) set of axiom/rule-
occurrences.

Note that in the previous definition, substitutions do not play any role, as expected: two
proof trees are similar if and only if they can be obtained through similar paths. One easily sees
that ~ is an equivalence relation; the corresponding equivalence classes, denoted by [II] „ , will
be called similarity classes.

We use similarity to curtail the subspace (T(V, G)/ ~ , X), where the continuation relation
X has been lifted to similarity classes as follows:

[IIi]~ X [n2]~ iff there are n x G [IIi]^, n 2 £ [n2]~ s.t. IIi X n 2 . (3.1)

It is apparent that any path computed by an interpreter that does not perform backtracking on
substitutions corresponds to a path in this subtree. Thus our quotientation is adequate to study
the behaviour of interpreters of this kind.

An interpreter works on proof-trees, not on equivalence classes. Hence it chooses suitable
representatives of the equivalence classes, and different choices correspond to different search
strategies. Since (3.1) does not require that every representative II of [IIi]^ has a continuation
in [n2]~, a complete search strategy has to choose a 'good representative' of [FIi]^, i.e. a
II € [Hi]~ that has a 'good representative' of [II2]^ as a continuation.

Regular Search Spaces and Constructive Negation 377

Thus the first condition that our subspace must satisfy is that good representatives exist.
Moreover, since an interpreter will compute only on the latter, we also require that our intuition
of 'representatives' of all the proof-trees belonging to their similarity classes is met.

Now we claim that regularity, which is the basis for the existence of most general proof-trees
among similar trees, ensures both the above conditions. Regularity is defined as follows:5

DEFINITION 3.8 (Regular search space)
A set S of proof-trees is a regular search space iff, for every similar 111, n 2 £ S, there is a
II e S such that TIi < II and n 2 < II.

Note that regularity is parameterized by the notion of similarity we have chosen to deal with.
The one presented here is the simplest and corresponds to the eliminability of backtracking on
substitutions in Prolog-like languages. Regularity can be made more interesting, for example
introducing versions of similarity that take into account permutability of rules, i.e. for richer
fragments, like hereditary Harrop formulae, where all rules are permutable and therefore it is
possible to restrict to a good representative, namely uniform proofs [31], so that there is no
backtracking on rule application.

Coming back to our analysis of regularity, let us consider any regular search space S. For
example, S could be the set of proof-trees of a program V, T(P), or its subset T(V, G), in
the P- system, as we will see in the next subsection. The possibility to avoid backtracking on
substitutions is connected to the following propositions (for more details and proofs see [33]).

PROPOSITION 3.9

S is a regular search space iff every similarity class [11]^ contains a proof-tree II* such that,
for every IT G [11]^, II' < II*, i.e. II* is a mgpt representing the former class.

One easily proves that, for two mgpts II*, II*. G [11] ,̂, II* H II*.; therefore every similarity
class contains a mgpt, which is unique up to renaming. This mgpt represents all the proof-
trees of the class, in the sense that it subsumes them. Moreover, it represents a good choice
for an interpreter, due to the following proposition.

PROPOSITION 3.10

If III is a mgpt, then, for every II2 such that 111 ~ n 2 , if there is a II s.t. n 2 •< II, then
III XIX

PROOF. Let II be a continuation of II2. Then c?II2 is an initial subtree of II. Since III is a
mgpt similar to FI2, there exists a substitution a s.t. II2 = 0TI1. Hence (Oa)Ui is an initial
subtree of II, i.e. II is a continuation of III. I

As a corollary we obtain:

PROPOSITION 3.11

Let 111, n 2 be mgpts. Then [IIi]^ •< [II2],» iff IIi X Tl2.

PROOF. The right-to-left direction is obvious. Conversely, let [IIi]^, •< [II2]^; then there are
II e [IIi]^, IT G [II2]^ s.t. II •< IT. By Proposition 3.10, IIi X IT and II' = 0II2 (since
the latter is a mgpt). Therefore 0II2 contains an initial subtree 011* < FIi, and then II* is an
initial subtree of II2 similar to IIi. Since FIj is a mgpt, II* < II1, i.e. IIi •< II2. I

6 Regularity is connected to generalization or anti-unification, independently introduced by Reynolds and Plotkin
(see [23] and references therein) in the lattice of (first-order) terms. This has been further explored in [19]. Under the
propositions-as-types interpretation, proof-trees are proof A-terms. [37] presents [anti]unification algorithms in the
Calculus of Constructions, although restricted to higher-order patterns. From their unary unification problem [32],
the existence of a mgpt is guaranteed.

378 Regular Search Spaces and Constructive Negation

Thus mgpts can be chosen as good representatives, and we can model our subspace as fol-
lows. Let S be a regular search space and T(S, G) the set of the proof-trees II :: 0G £ S;
define Gen{S) and Gen(S,G) to be the corresponding sets of mgpts. By Proposition 3.11,
the subspace (T(S, Q)/ ~ , X) is isomorphic to (Gen(S,G)/ =, ;<) and we can therefore op-
erate on the latter. To analyse the properties of this subspace, and to understand the underlying
geometry, we introduce the notion of canonical continuation of a proof-tree.

DEFINITION 3.12

A continuation FI* of a proof-tree II is a most general continuation (mgc) if, for every other
continuation A similar to II*, A < II*. A continuation is canonical iff it is a one-step mgc.

PROPOSITION 3.13

If II is a mgpt, then its mgcs are mgpts. In particular, its canonical continuations are mgpts.

By the above proposition (Gen(S, Q)/ =, <) can be built using only canonical continua-
tions, thus avoiding even the problem to choose substitutions. Moreover, we can prove:

PROPOSITION 3.14

Let II be a mgpt of S and if be an assumption of II. If there is a proof A that is a mgc of n ,
then there is a canonical continuation II' of II selecting H such that A is a mgc of II'.

PROOF. Suppose the contrary, that there is a proof-tree A that is a mgc of FI, but there are
no canonical continuation II' of II selecting H such that A is a mgc of IT. But there is an
initial subtree A of A that is a one-step continuation of II selecting H. Hence A is similar to
the canonical continuation II* of II selecting H. By Proposition 3.13, II* is a mgpt and, by
Proposition 3.10, it continues in A, absurdum. I

Proposition 3.14 shows that, by using canonical (i.e. most general) continuations, during
the search the selection of the assumption H may be completely non-deterministic. Therefore,
we can further reduce the search space by using selection functions, which associate to every
proof-tree one of its assumptions.

DEFINITION 3.15

A selection function is a mapping F : T(S)/ = —> Q. An F-search tree is a subtree of
(Gen(S, Q)l = , -<) such that, for every node [II], its children are the canonical continuations
selecting the assumption F([FI]). Moreover, •<? w>" denote the subset of the continuation
relation such that the selected assumption in the continuation step is chosen by F.

It is clear that -<p is still a partial order and (T(S, G)l ~ , <?) is a subtree of (T(5, Q)/

COROLLARY 3.16

For every selection function F, (Gen(S,Q)/ = , <?) is success-complete.6

This is a second reason, beyond eliminating backtracking on substitutions, for stressing the
relevance of regularity in logic programming.

Now we say that an A/l/?-system is regular iff the set of its proof-trees is a regular search
space. As one can easily see, the regularity of an AA/?-system implies the regularity of the
subspaces TCP) and T(V, Q). In T{V, Q), we can avoid backtracking on substitutions and
search only for most general proof-trees. Therefore in an AAfl-system we can use essentially
the same search strategy adopted for SL£>-resolution and the same main results hold.

6From now on, we suppress mention to the renaming quotientalion.

Regular Search Spaces and Constructive Negation 379

The problem is then how to compute canonical continuations. We say that there is a reso-
lution method when canonical continuations can be computed depending on the selected as-
sumption and not on the whole proof-tree.

DEFINITION 3.17 (Resolution method)
A partial function Res(G, Ax, R) is a resolution method iff:

• Res(G, Ax, R) is defined iff Ax can be applied to G by R.

• Res(G,Ax,R) = [(0 ,Gu. . . ;Gn)], where G^ . . . ;G n G R{6G, Ax) and the corre-
sponding continuations are canonical.7

If the search space is regular, then for every R, Ax and every proof-tree with selected as-
sumption G, either there is canonical continuation (Res(G, Ax, R) is defined) or no continua-
tion exists {Res{G, Ax, R) is not defined). Moreover, for the same R, Ax and selected G, any
two canonical continuations are equivalent; therefore Res(G, Ax, R) is defined as an operator
computing equivalence classes. This operator imports all the search properties of pure Prolog,
in particular the independence of the selection function with respect to success-completeness.

3.4 Finite failure and AAR-systems

There is a natural proof-theoretic characterization of finite failure in an AAfl-system: call an
assumption/aj'/eJ with respect to a program V, if no axiom of V can be applied to it, and call
a proof-tree k-failed iff it contains at least one failed assumption which occurs in a branch at
height less or equal to k.

DEFINITION 3.18 (fc-failure)
A search-tree (T(P, G), ;<) is k-failed if every leaf is fc-failed. It is finitely failed if there is a
k such that it is fc-failed.

A proof-theoretic analysis of the abstract idea of negation as failure (NF) can be based on
the above characterization of finite failure. For the sake of simplicity, we consider here only
the P-system, but it should be obvious how this treatment could apply to AA/?-systems in gen-
eral, provided that they are regular. Our aim is to correlate fc-failed search-trees to the usual
notion offinitely failed SLD-\rees (as defined, for example, in [27]). To achieve that (Propo-
sition 3.21) we reconsider selection functions.

First we note that, as a consequence of success-completeness (Corollary 3.16), for every
selection function F a complete search-tree (T(V,G), •<) is failed iff so is the corresponding
F-search tree (Gen(P,G), X F) . This is refined in Proposition 3.20 with respect to A:-failure.
Moreover, the next Proposition (3.19) shows that .F-search trees are finite, provided that the
selection function is fair. As usual, the fairness of F guarantees that in any path of the corre-
sponding F-search tree every open assumption is eventually selected.

PROPOSITION 3.19

If the search tree (T(V, G), •<) of a (finite) program V is finitely failed, then every fair F -
search subtree {Gen(V, G), <F) is finite.

PROOF. Let F be a fair selection function. Since there is a it such that {T(V,G), X) is it-
failed, fairness guarantees that every path in the subtree {Gen(V,G), ^ F) is finite. Moreover
the latter is finitely branching, since V is finite. I

7Assuming the usual standardization apart.

380 Regular Search Spaces and Constructive Negation

PROPOSITION 3.20

Let F be a selection function. If the F-search tree (Gen(V, G), •<?) is fc-failed, then so is
the corresponding complete tree (T(V, G), •<).

PROOF. We prove a more general statement, namely: for a proof-tree II, if the F-search tree
of its continuations (Gen(V,U), -<p) is fc-failed, then so is the complete tree (T{T1,V), ;<).
The proof is by induction on the height of (Gen(P, II), X F) .

• Basis. (Gen(V, II), XF) has height 0, i.e. the selected assumption F(II) is fc-failed. Our
assert holds because (an instance of) this assumption belongs to every continuation of II.

• Step. (Gen(V,Tl),<F) has height i + 1. Let TIi , . . . , IIn be the one-step mgc of II.
For 1 < i < n, by the inductive hypothesis on (Gen(P, FL.), -<F), the complete space
(T(7 ? ,n,) , •<) is fc-failed. Since every non-trivial continuation of II belongs to some
(T(V, II,), X), we get our assert.

•
Therefore fc-failure can be finitely discovered, by using fair selection rules. Remark that

the latter two propositions hold for any regular AAfl-system.

For definite programs, we can relate fc-failed search trees to finitely failed SID-trees.

PROPOSITION 3.21 (fc-failure)
Let P be a definite program, F a fair selection function and A an atom. The SLD-tiee for
P U {<- A} is finitely failed iff there is a fc such that (T(P, G), ;<) is fc-failed.

PROOF. For every selection function F and every atom A, the SLD-tree with root <- A cor-
responds to a F-search tree (Gen(P,G), XF) such that, for every node <- B\,... ,Bn of the
SLD-tree, the corresponding node in the F-search tree is a class [II], where II has assumptions
Bi,..., Bn. The proof is similar to that for Theorem 2.6. Conversely, one easily sees that,
renaming apart, the assumptions of the proof-trees of an F-search tree originate the required
SLD-tree.

By the above correspondence, we have that the SLD-tiee for P U {«- -4} is finitely failed
iff (Gen(P, G),<F) is fc-failed. Then our assert follows from Proposition 3.20. I

5.5 Examples

Now we analyse regularity and the existence of a resolution method for the systems of the
previous sections and others. For the P-systems one can prove that regularity holds (an in-
structive proof can be found in [33]). As a consequence, for every goal G and program P, the
set of the proof-trees T(P, G) is a regular search space and we can use F-search trees to find
proofs of 0G. Moreover, the resolution method is defined as follows.

Let V(Vy(Li A • • • A Ln) -* B) be an axiom for the P-system and A be a goal. If the
unification algorithm computes an mgu 6 of B and A, then

Res(A,V<yy(L! A . . . A Ln) -> B),P) = [{0,6Lu • • • ;9Ln)\

otherwise Res is undefined. Again note the complete analogy with SLD-resolution. Observe
that no substitution is attempted on the variable(s) y and that, in order to obtain most gen-
eral continuations, 6 must replace by new names (w.r.t. the current proof-tree) the (possible)
variables of L\... Ln that do not occur in B.

The F and PF-systems are non-regular systems.

Regular Search Spaces and Constructive Negation 381

EXAMPLE 3.22

Consider the following proof-trees 111, Ila, II3, where Fax(odd) is

Vi(odd(i) -> 3y{x = s(0) A true V x = s(s(y)) A odd{y)))

Faxjodd) -odd(W) Faxjodd) -true ->odd(v) Faxjodd)
(' -odd(s(s(W))) (' -odd{W) ('

indeed, they are similar,8 but there is no proof-tree n such that II; < II for i = 1,2,3.

As far as the last proof-tree is concerned, note first, that among the examples it is the. only
one not closed under substitution. Second, its derivation is:

• —true is generated since W and s(0) unify;

• ->odd(v) is generated, since W unifies with s(s(y)) which is not instantiated by the mgu
W/s(s(y)) and v is the eigenvariable renaming the existentially quantified y.

In the absence of regularity, the notions of mgpt and of canonical continuation do not be-
have as desired. This means that we cannot find a success-complete resolution method unless
we admit backtracking on substitutions. In particular Res has to compute many candidate sub-
stitutions and goal sequences: similar results (with different style) are contained in [45, 29].
Thus strategies like SZZWF-resolution cannot be success-complete, as we will discuss in the
next section.

On the other hand, the latter is not the only case where backtracking on substitutions is re-
quested by a condition of non-regularity. Consider the case of higher-order Horn clauses [31].
It is well known that the unification problem is in general infinitary [46]. And consider the fol-
lowing case, taken from [35]:

Axl : mapfun F nil nil.

Ax2 : mapfun F X.XS (FX).YS <- mapfun F XS YS.

Suppose you are evaluating the goal:

mapfun F [1,1] [(g 11), (g 12)].
In this case the unification problem is finite, but not unary; F can be assigned to Xx.gxx,
Xx.gxl, Xx.glx, Xx.gll, leading to configurations like this one, which applies the substitu-
tion FI Xx.gxx:

mapfunF[l][(g 12)) Axl
mapfun F[1,1] [(g 11), (g 1 2)]K '

Unfortunately, only the third unification will succeed for the whole goal. No mgpt exists and
thus the interpreter will have to backtrack (potentially for an infinite amount of trials) during
search.9 Hence a formulation of Res can be infinitary and look something like:

If Ax can be applied to G by R, then Res{G, Ax, R) - {[(6j} Gj)]}, for 6, G J,
where 7 is a complete set of unifiers [46] and G_, is the sequence of goals correspond-
ing to Oj.

8Note that the F rule can be formulated in a way such that the PF-system is closed under substitutions, still it is
not regular. This is also the case for higher-order Horn clauses, addressed below, where closure but not regularity is
guaranteed.

9 If, on the other hand, we label the rules with the indication of the relevant substitution, we recover the regularity
of the space, but at the cost of allowing an infinite number of rules.

382 Regular Search Spaces and Constructive Negation

4 Proof-theoretic analysis of NF

We introduce Clark's explanation of NF, that is we characterize it as provability from the com-
pletion [10]. We use a weakening (in a sense detailed below) of Clark's completion, together
with the Domain Closure Axiom (DCA) [30]. Then we give our proof-theoretic reading of
the problems of SLD/VF-resolution w.r.t. soundness and completeness, namely enlightening
the role of regularity for the latter (point (b) in 4.2)). In Section 5, we introduce the idea of
constructive negation via regular splitting to overcome some of these problems and we relate
it with the already developed notion of intensional negation [5].

4.1 F-systems and SLDNF'-resolution

Here we relate finite failure to proofs in the FocM-system, that is in the F-system enriched
by the F-rule restricted to applying suitable instances of the Domain Closure Axiom.

DCA depends on the signature E of the underlying language. It essentially says that every
element of the domain can be represented by a ground term of E, i.e.

{DCA) :

The following schema is admissible w.r.t. DCA, as shown, for example, in [30], where it
is called proof by case analysis:

DEFINITION 4.1 (Covering)
Let ||L|| be the set of ground instances of aliteralL. A£-covenngforLisaset<7iL,... ,anL
such that ||<7iZ/|| U • • • U ||<7nL|| 2 ll-̂ ll- The instance of the DCA-schema corresponding to
a E-covering for L is

V(Vy(a1LA...A<TTlL) ->• L)

where y are the new variables introduced by <Ti, L ..., anL (we assume that the range of every
cr, contains only new variables that do not occur in L or in the range of every other substitu-
tion).

In the following, we will stipulate S to be finite, being the signature of the underlying pro-
gram, rather than an infinite universal language as in [21, 3]. Moreover we will extend the
notion of covering to arbitrary formulae.

To use the F-system, we associate to a program its failure axioms, which will be applied in
the F-system. The starting point is the only-if part of the completion of a predicate p (. . .) :

n h,

Vz(p(z) -)• \J 3yi(x = U A / \ Lltk)).
t = l fc=l

For every fci,..., kn such that 1 < kt < /i; we infer

n

kl ,...,*„ (p) : Vz(p(z) -+ 3y \J {x = U A LlX)).

By convention, the failure axiom of a unit clause introduces the constant true, hence hi > 1 is
always fulfilled. Observe that these axioms contain exactly a singleton literal in every disjunct

Regular Search Spaces and Constructive Negation 383

of the consequent. For a program P, Fax(P) will indicate the set of its failure axioms in the
latter sense, called weak completion axioms. The cardinality of Faxkt ,...,*„ (p) is 11"= 1 ̂ "
where n is the number of clauses and /i, the number of literals in each clause of P with head

EXAMPLE 4.2

The only-if part of t (for times), the usual program for computing the product, is:

V(t(a,6,c) -*• 3x{a = xAb = 0Ac=0)v
3x,y,z,w(a = x A b = s(y) Ac = z A t(x,y,w) A sum(w, x, z))) f

From (4.1) we derive the failure axioms:

V(t(a,6,c)-> 3x,y,z,w ((a = x A b = 0 A c = 0 A true) V
(o = i A 6 = s(y) A c = z A t(x, y, w))).

V(t(a, b, c) ->• 3rr, y, 2, to ((a = i A 6 = 0 A c = 0 A true) V
(a = x A b = s(y) Ac = z A sum(w, x, z))).

Note that, in general, the conjunction of the Fax^ ,...,*„ (p) is notably weaker and does not
imply the only-if part of Comp(p). This is due to the shared binding of local variables, i.e.
those which appears in the body but not in the head of a clause—like w in the former example.
In the case of shared local variables, a factorization of failure axioms is needed. For example:

EXAMPLE 4.3

By DC A, the right-hand side of (4.1) is equivalent to the following factorization:

3x(a = xAb = 0Ac = 0)V
3i, y, z(a = x A b — s(y) Ac = z A t(x, y, 0) A sum(0, x, z)) V
3x,y,z,j(a = xAb = s{y) A c = z At(x,y,s(j)) Asum{s{j),x,z)),

which corresponds to the fact that w is covered by 0, s(j). We can derive four failure axioms
from this factorization, parallel to the possible choices between t(x, y, 0), sum(0, x, z) in the
second row and t(z, y, s(j)), sum(s(J), x, z) (in the third one). For example, one of these
axioms is:

Faxl : V(t(a,b,c) -» 3x,y,z,j {(a = x A b - 0 A c = 0 A true) V
(o = x A b = s(y) Ac = z A $um(0, x,z))V
(a = xAb = s(y) Ac= z A t{x,y, s(j))).

Notice that -iswm(0,0, s(v))\ ->t(0,0,.s(j)) £ F(-.((0, s(0), s(v)), Faxl). If one looks at
the finitely failed SLD-Vree for {t(0, s(0), s(u))}, one can recognize that such finite failure is
reduced to the finite failure of sum(0,0, s(v)) and ^ (0 , 0 , s(j)).

The key issue here is regularity, which is independent from the problems due to shared
local variables. Therefore, we will assume that local variables are restricted to occur only in
a single literal in the body of a clause, similarly to condition (d) in Barbuti's definition of flat
programs [5]. This can always be achieved by a simple/oWing step that can be demonstrated
to be semantics preserving. Note that under this hypothesis the weak completion coincides
with Clark's completion.

384 Regular Search Spaces and Constructive Negation

Moreover we will assume, for the sake of the following two Theorems (4.4 and 4.5) that
the heads of clauses are unrestricted, or left-linear, i.e. no variable occurs therein more than
once.10 There are other alternatives, however, as sketched in Example 5.7.

THEOREM 4.4 (Finite failure)
Given a definite program P and an atom A, if P U {4- A) has a finitely failed SLD-tree, then
there is a proof II :: ->A in the FbcM-system applying only axioms from Fax(P).

The proof requires some additional machinery and is detailed in the Appendix. Now we
approach the relation between finite failure and proofs in the PFoc/i-system. To every nor-
mal program P we associate the set WComp(P) = Ax(P) U Fax(P), where Fax{P) has
been straightforwardly extended to deal with literals.

THEOREM 4.5 (PFDc/\AVComp(P) adequacy)
Let P be a normal program and L a literal. If there is a finitely failed SLDNF-tree for P U {«-
L}, then there is a PFDCA-proof II :: neg(L) with axioms from WComp(P). If there is a
SLDTVF-refutation of P U {«— L} with answer substitution 6, then there is a PFDCA -proof
II :: 6L, with axioms from WComp(P).

PROOF. By induction on the rank of the finitely failed SLDNF-tree, as defined in [27], or of
the SLD/VF-refutation.

• Basis. The basis for refutation is analogous to Theorem 2.6 and the basis for finitely failed
trees to Theorem 4.4 (see Remark A. 17 in the Appendix).

• Step for refutation. We proceed as in Theorem 2.6, by Step 0 and Step i+1, provided that
the selected literal Ln , is positive. Suppose in Step i+1 Ln , = ->A. In this case, there is a
finitely failed tree of rank k for P u {«- A). By inductive hypothesis we have a PFDCA-

proof II :: ->A.

• Step for finitely failed trees. Let # be a finitely failed SLDNF-tree of rank k + 1, with root
«— L. Before translating $ into a proof in the PFbcM-system, we delete all the nodes
<— L\,..., Li,..., Lm where the selected literal is a negated atom L, = ->B and there is
a finitely failed tree (of rank k) for P U {«- B). Note that this step is an implicit applica-
tion of weakening. More precisely, we delete the descendant <- L\,..., L,_i, L i + i , . . . ,
Lm, of 4- L\,..., Li,..., Lm and we add the (suitable instances of) Li in all the nodes
under the deleted one. One easily sees that we can iterate this process until we obtain a
SLDNF-tiee $* such that in every intermediate node the selected literal is an atom.

$* is such that L is the root and A\,... ,An,->Bi,... ,-<Bm are the literals selected in
the leafs. Ai,..., An have a finitely failed SLDNF-tree of rank < A;, and B\,..., Bm

have a SZZWF-refutation of rank < k. Therefore, by the inductive hypothesis, we have
PPDC/1-proofs III " ->i41) . . . , I ln :: ->An,Ai :: B i , . . . , A m :: Bm and by Remark
A. 17, there is a PFDCA -proof II :: neg(L).

REMARK 4.6

The proof enlightens the proviso on open literals. While no problem arises from A\,..., An,
were B\,..., Bm not ground, by inductive hypothesis we would get proofs Ai :: 9\B\,...,
ATO :: 0mBm, and this would correspond to unsound substitutions of eigenvariables of #*.

10It is, nevertheless, well known that every clause with restricted head can be left-linearized by introducing new
variables and constraining them by a new predicate, say eg, axiomatized by eg(X, X)' [48, 5].

Regular Search Spaces and Constructive Negation 385

To conclude, a few observations are in order.

• DC A is an axiom-schema, and therefore cannot be properly applied by an AAR. It could be
substituted by the collection of all its instances, but this would give rise to infinitely many
axioms. A working alternative is to introduce a systematic mechanism to generate deeper
and deeper instances of the schema. This solution is similar to the herbrand procedure
of [5]. We will not develop this issue here. Our aim is to underline the role of regularity,
which is an independent cause of the incompleteness of SL£WF-resolution.

• As is technically shown in the Appendix, DC A is not needed for two classes of programs.
1. Krom programs [20]. In this case the body of a non-unit clause contains just one literal.

In our following examples, we will consider mainly Krom programs.
2. Left-linear programs without local variables. In this case, if -<A (with A open) is a logi-

cal consequence of the completion, then there is a covering of -<A such that its elements
have a PF-proof with axioms from the weak completion.

4.2 On (un)soundness and (in)completeness ofNF

SLDNF-reso\uUon has a non-logical behaviour if open negative goals are selected. In our
model, we can distinguish different causes for that.

(a) Soundness problems: during the computation (logically unsound) substitutions on eigen-
variables may occur.

(b) Success-completeness problems: given an open goal G, SLDNF-resolution fails to return
an answer, even if there is a PF-proof II :: OG: the culprit can be found in the lack of
regularity, which lies at the basis of the success-incompleteness of NF.

(c) Incompleteness of the PFDCA-system: there are goals 6G such that Comp(P) (= 9G
in classical logic but no PFDCA -proof II :: 6G exists. For example, consider the well
known example: p <- q, p < <q, q <- q. No PFDC/i-proof of p exists, even if it is a
logical consequence of the completion. We will not discuss this issue further. Note that
point (b) and (c) are independent: if the PFDCA- system were complete w.r.t. classical
logic, yet not regular, the success-incompleteness issue would not be solved.

As far as (a) is concerned, this corresponds to the fact that a non-legal substitution on the
eigenvariables may be introduced in some continuation step, as shown by the following ex-
ample, taken from [27].

Ax\ : p: —>q(X)
Ax2: q(a).

In standard Prolog, using an unsound selection function, the goal« >p succeeds (since <- p
fails), although it is not a logical consequence of the completion of the program. In our model,
safeness (i.e. soundness) is enforced not by an external condition on the selection function, but
by the usual proof-theoretic proviso on eigenvariables, i.e. that they cannot be instantiated by
substitutions, as the following proof-tree shows. Once we have obtained the goal q{u), with
eigenvariable u, we cannot continue our proof-tree in a sound way; so we do not obtain any
proof of ->p.u

1] Note that in a more detailed representation of the SLDNF-success tree, that node and the branch ending with it
would have been labelled with something like 'floundering', while in our approach this is just a failing branch.

386 Regular Search Spaces and Constructive Negation

q(u) p->3x^q(x)

This shows that we have a natural way to distinguish proofs of negated goals (where such a
proof has no assumptions) from proof-trees with assumptions that cannot be continued. The
latter corresponds to unprovability.

Last we remark that, since failure rules do not introduce unifying substitutions, dangerous
substitutions can arise only if a positive assumption is selected in a continuation step and the
related unification modifies the eigenvariables of some failure rule; but, as shown in the proof
of Theorem 4.5 and Remark 4.6, this cannot happen if no open negated formula is selected in
a continuation. This is particularly true for definite programs and open negative queries where
no soundness problem can arise. Moreover, if we ensure that no instantiation link arises on
eigenvariables, then we may safely select open negated goals, as is well known [36,45], under
the name of ESLDNF- resolution.

With respect to (b), there are PF-proofs instantiating open negated goals which are ignored
by standard SLIWF-resolution. We show how this is related to the non-regularity of the PF-
system.

Let us consider for example the following (non-stratified) program EVEN:

Ax\ : even(0).
Ax2 : even{s{X)) : - -^even(X).

Ax(EVEN) contains the obvious success axioms and Fax(EVEN) contains one failure
axiom Fax(even):

Vx(even(x) -» 3u(z = 0 A true V x = s{u) A -ieuen(u))).

If we start from -ieven(X), SLZWF-resolution yields a finitely failed (not safe) tree and
no solution is found, even if the PF-system contains infinitely many proofs with axioms
from WComp(EVEN) and consequence -ieven{...). Success-incompleteness of SLDNF-
resolution is due to non-regularity, as Figure 2 shows.

Ovals contain similarity classes. Since -•even(X0) is a mgpt, we can use it to generate all
canonical continuations of the root class. All the continuations are similar (only Fax can be
applied), and we get the descendant class SC2- The latter is non-regular: it contains two max-
imal, yet incompatible proof-trees, 7Ti and TT2. Since the identical substitution is more gen-
eral than X0/s(Xi), SLDNF-resolution selects TTJ , which contains the unprovable assumption
-'true, and fails. On the other hand, TT2 has two descendants, and this shows that SLDNF-
resolution is success-incomplete. Concerning SC3,SC4, the inscribed proof-trees are mgpts.
SC3 is a success node, while sc4 can be continued. Since the unique assumption that can be
selected for a continuation is ->even(X2), sc^ behaves as the root, i.e. it has one non-regular
descendant class.

When a similarity class contains a finite set of maximal proof-trees, backtracking on them
provides success-completeness.

In the next subsection we sketch a partial solution to these problems: each failure axiom is
split into a set of negative axioms, and backtracking on substitutions is replaced by backtrack-
ing on the negative split axioms, applied by the regular rule P~.

Regular Search Spaces and Constructive Negation 387

•true: eveniv); Fox! LiJ
->even(Xo)

SCi

even(Xi); Fox
-——

->even(s(Xi))

_Axi__
euen(O); Fox

->even(s(O))

X
); Ax2

SC3 even(s(X2)); Fax
->even(s(s(X2)))

|sc2

SCi

FlG. 2. Search space for ->et;en(ATo)

5 Regular splitting

Let us consider a failure axiom Fax^ jtn (p)

For the sake of simplicity, we will omit ki,...,kn and therefore the double index and write
Fax(p).

The F rule has the following behaviour. Let p(a) be an open instance of p(x) such that:

negiaiL^);... ;neg(akLtk) € F(-.p(a),Faz(p)).

Let# be a substitution; in general, the sequence neg(6criLi1);... ;neg(6<jkLlk) does not be-
long to F(0-ip(a), Fax(p)), but the latter may contain a shorter and possibly empty sequence:
this destroys both closure under substitution and regularity.

We say that p(a) is a substitution-closed instance (s.c. instance) w.r.t. Fax(p) when the
above incident does not occur, i.e. p(a) is sufficiently instantiated in order to yield the closure
under substitution of F(-ip(a),Fax(p)). A trivial case is when p(a) is already ground. In the
genera] case the following holds.

REMARK 5.1

p(a) is a s.c. instance w.r.t. Fax(p) if there are A; substitutions a\,... ,ak s.t. a = <ri *<,, . . . ,
a = (Tittit > where t\,..., tn are the terms involved in Fax(p) and a unifies only with t^,...,

Even considering only s.c. instances, regularity would not hold, since the existence of an
upper bound of similar trees is not guaranteed. Therefore we split Fax(P) into axioms that
can be applied by the regular system P, as follows.

388 Regular Search Spaces and Constructive Negation

If p(a) is a s.c. instance w.r.t. Fax(p), we build by contraposition the negative axiom
Nax(p(a)), where the outermost quantifier binds the open variables in p{a), while the possi-
bly empty string of bindings Vy originates from the local variables:

In the limiting case where h = 0 (i.e. a does not unify with any £_,), we have that Nax(p(a))
isV(-.p(a)).

REMARK 5.2

For every s.c. instance Op(a) w.r.t. Fax(p):

By the above considerations, the behaviour of the non-regular rule F applied to Fax(p)
coincides with the one of the regular rule P~ applied to Nax(p(a)), for every s.c. instance
p(a) w.r.t. Fax{p). Thus we will call Nax(p(a)) a regular instance of Fax(p).

DEFINITION 5.3 (Regular splitting)
A regular splitting of a failure axiom Fax(p) over a signature S is a set {Nax{p(ai)),...,
Nax(p(an)} of regular instances of Fax(p), such that p (a i) , . . . ,p(on) is a E-covering of
p(x).

By Nax{p) we will indicate a regular splitting of Fax{p) and by Nax(P) a collection of
regular splittings for every predicate occurring in a program P .

In the usage of a regular splitting Nax(P) of a program P and its failure axioms Fax(P),
we will consider only proof-trees with terms built out of E. Ways of parameterizing (con-
structive) negation to other domains have been investigated in [26, 49] and could be applied
to our technique. Nevertheless, this is beyond the spirit of the paper. Furthermore, the right
framework for regular splitting (as well as for intcnsional negation) is a many-sorted one, as
already hinted in [41].

We need the following substitution lemma, whose easy proof is omitted.

LEMMA 5.4

In the PFQCA-system for every proof II :: L of and substitution 9, there is a proof n* :: OL
with height less than or equal to II :: L.

In particular, the proof n* :: 6L may introduce eigenvariables in the root. This fact will be
understood in the proof of Theorem 5.5. Moreover, fora failure axiom Fax{p), the regular
heads of Fax (p) will be the instances p(a i) , . . . ,p(an) such that -ip(a,) is the head of areg-
ular instance of Nax(p).

THEOREM 5.5

Let P be a normal program and let us assume that, for every failure axiom we have a corre-
sponding regular splitting over E. The following holds:

(a) for every proof II :: G in the PFDCA-system with axioms from Ax(P) U Fax(P) there
is a proof A :: G in the Ppc/i-system with axioms from Ax(P) U Nax(P);

(b) for every proof A :: G in the PocM-system with axioms from Ax(P) U Nax(P), there
is a proof II :: G in the PFDCM-system with axioms from Ax(P) U Fax(P).

Regular Search Spaces and Constructive Negation 389

PROOF, (b) is proved by an easy induction on A :: G, using Remark 5.2. (a) is proved by
induction on the height of II :: G.

Basis. If II :: G is an application of an axiom V.rL, it is already in the format of the P-
system. If the axiom is Wx(p(x) -y 3y(x = ti A L\ V . . . V .r = tn A Ln)), then G is ->p(t)
and t does not unify with < i , . . . , tn. p(t) is covered by the regular heads p{ai),... ,P(«A.) of
Fax(p). Let a^ (1 < j < m) be the heads such that the /.ij = ??igu(oIj, t) is defined, and
let bj = /.ijt = HjGij- Then {p(6_,)} is a covering of p(t) and none of the alj unifies with
t\, • • •, tn (follows from the regularity of the splitting). Then each -•?(&_,) has an immediate
proof in the .PocM-system with axiom Nax(p(aij), and this yield our final proof by an ap-
plication of the DC A-instance V(Vi/(->p(6i) A . . . A -<p{bm)) -> -<p(t)), where the proofs of
-<p(bi),..., -ipibm) introduce the suitable eigenvariables.

Step. If the axiom applied at the root of II :: G is a Z)Cj4-instance, or an axiom from
Ax(P), our thesis is an immediate consequence of the inductive hypothesis. Otherwise it is
Vx(p(x) ->• 3y{x = < ! A L I V . . .V.T = tnALn)),G is ->p{t), and t unifies with * „ , . . . ,tlu. As
in the inductive basis, we can build a covering p(t>i),... ,p(bm) ofp(t), where for 1 < j < m,
b{ = ^,-tj = n,t. By Lemma5.4, there are PFDCA-proofs IIJ :: ->p(6i), •. •, IT^ :: ->p(bm)
of height less than or equal to II. By the inductive hypothesis, for every immediate subproof
II' :: LofFI* there is a corresponding PDCA-proof II" :: L, and hence (by Remark 5.2) we
can construct a PDCA-proof of ->p(bt). We can now proceed as in the basis, by applying a
suitable instance of the Z?Cj4-schema. I

The translatability of PFDCA-proofs into PocA-proofs is independent from the issue of
completion consistency [3] with respect to classical (or even intuitionistic) logic. Indeed, the
logic of the P.FDC,4-system is so weak that no collapse due to the presence of inconsistent
premisses is possible. One reason is the lack of the intuitionistic rule for negation. The other
is the non-availability of hypothetical judgments that could nevertheless force the collapse of
the negative fragment of the calculus. On the other hand completion consistency with respect
to three-valued logic [21] can be ensured by exploiting the three-valued completeness of the
f^DC/i-system, as briefly addressed in the Conclusions.

Let us come back to our starting problem of regularizing programs through splitting. In the
following we will restrict discussion to the case where local variables are not involved and we
will consider the equivalence with respect to ground answers. Therefore we will need a milder
version of Theorem 5.5, where for every PF-proof II :: L with axioms from Ax(P)L)Fax(P)
we get P-proofs of a finite covering of L, with axioms from Ax(P)U Nax(P), i.e. we will not
use DC A. Since the P-system is regular, Ax(P) U Nax(P) allows one to search for answers
of open negative goals, basically using the computation model of SLD-resolution.

In [22] and later in [5] (more targeted to logic programs) algorithms to compute the (rela-
tive) complement of first-order terms are described (see also [11]). Those algorithms can be
adapted to compute regular splitting, as informally described in the examples below.

EXAMPLE 5.6

Let us consider the program EVEN (4.2) over the signature ^EVEN = {0, s} of natural
numbers. The failure axiom Vx(eveii(x) —> 3u(x = 0 A true V x = s(u) A ->eveii(u))) can
be split as follows.

First we considers = 0. Since euen(0) is already ground, we can build by contraposition
the corresponding negative axiom or regular instance:

Nax(even(0)) : ->trtie —> -ipt>e>»(0).

390 Regular Search Spaces and Constructive Negation

The terms not covered by the above regular instance are

where \ represents set difference among terms as in [22]. Since even(s(W)) isas.c. instance
w.r.t. Fax(even), we may obtain the regular instance:

Nax(even(s(W))) : even(W) -t ->even(s(W)).

Now all terms are covered. Hence the regular splitting contains Nax(even(0)) and
Nax(even{s(W))).

EXAMPLE 5.7

Consider the program SUM (2.2). Its failure axiom is;

Va, b, c(sum(a, b, c) -> 3x, y,z (a = xAb = 0Ac = xA true V
a = x A b = s(y) A c = s(z) A sum(x, y, z))).

The case a = x,b = s(y),c = s(z) covers the set ||(x,s(j/),s(2:))||. We obtain the regular
instance:

Vx,y,z(-<sum(x,y,z) ->• ->sum(x,s(y),s(z))).

The non-covered set of terms is now ||(u,0,t;)|| U ||(u,v,0)||. Splitting ||(u,u,O)|| in
||(0, v, 0)|| U ||(s(u),v, 0)|| we obtain the regular instances:

>• ->sum(0,v,0))
Vu, v{-isum(s(u), v, 0)).

Now it remains to find the regular instances covering ||(u,0,i>)||. We obtain V(-<true —>•
-<sum(u,0,u)) and the non-covered set is | |(u,0,u)|| \ ||(w,O, u)||. This difference has no
finite representation. The standard solution is to left-linearize the source program: an alterna-
tive could be to find a recursive representation12 of || (u, 0, v) || \ || (u, 0, u) ||, namely (stretching
the notation) ||(s(u), 0,0), (0,0, s(u)),(s(u),0,s(v)) <- (u,0,i;)||. This yields the regular
instances:

Vu-.sum(s(u),0,0)
Vu-isum(0,0,s(u))

(u,0, v) -> ->5um(s(u),0, s(v))).

Summarizing, we obtain the following clauses:

Vu,t>,u;(->sum(u,i;,u;) —>• -isum(u,s(v),s(w)))
Vu,v(-<sum(u,0,v) -y -isum(s(u),0, s(v)))
Vu, v->sum(s(u), v, 0)
Vu(-.sum(s(u),0,0))
Vu(-isum(0,0,s(u))).

Note that we have discarded implications with true as consequent, since they can only lead
to the unsatisfiable goal through the P~ rule. Apart from the elimination of redundancies,
other optimizations are possible; for example localizing subsumption cases (in the former ex-
ample the fourth clause is an instance of the third) or applying partial evaluation. In general,

1 2 This is connected to the notion of regular tree languages.

Regular Search Spaces and Constructive Negation 391

post-transformation analysis of the program will be recommended, if only to recover the op-
erational behaviour of the old program. This obviously depends on pragmatic considerations
motivated by the actual behaviour of the Prolog engine, namely its sensitiveness to the order-
ing of literals and clauses. This is beyond the aims of this paper and is treated elsewhere in
the literature.

5.1 The positive method

Now we show how to adapt the former technique to the pure Prolog inference machinery, by
a transformation of normal programs into equivalent definite programs based on regular split-
ting. This is very close to the idea of intensional negation [5]. See Section 6 for other transfor-
mational approaches. Note that, as soon as the machinery of AAR-systems is set—machinery
which is not specific to this application—the reconstruction of intensional negation through
regular splitting is almost trivial.

We assume an enriched signature where, for every predicate symbol p, we have the addi-
tional symbol pc , that we call the complement of p. Let us consider the translation C:

= Pc(t) and C(p(t)) = p(t).

For every clause c and axiom Ax(c):

C(Ax{V(Li A • • • A Lh -> A))) = y{C{Lx) A •• • A C{Lh) -* A).

For every axiom Nax(p(a))

A . . . A Ln) -> Ma)))) = V(V»(C(Li)) A • • • A C(Ln)) -4 pc(a)).

Let P be a normal program and Nax(P) the negative axioms, obtained by a regular split-
ting of Fax(P) over a signature S. We have that using the above translation C, we can com-
pute a bijective map from the pfoof-trees of the P-system with axioms from Ax(P)uNax(P)
to the proof-trees of the P-system with axioms from C(Ax(P) U Nax(P)). We obtain:

PROPOSITION 5.8

Given a normal program P , whenever C(Ax(P) U Nax(P)) is a set of Horn axioms, it is a
definite program equivalent (via translation C) to Ax(P) U Nax(P).

Therefore C(Ax(P) U Nax(P)) can be run using standard SLD-resolution.

EXAMPLE 5.9

Considering Example 5.6, C(Nax(even(O))) isfalse-t evenc (0) and C(Nax(even(s(w))))
isVw(even(w) -> evenc(s(w))). Analogously for C(Ax(EVEN)). From the Horn axioms
obtained this way, we extract the program (where the redundant evenc(0) «— false is omit-
ted):

even(0).
even(s(X)) <- evenc(X)
evenc(s{X)) <- even(X).

PROPOSITION 5.10

Let P be a definite program and Nax(P) be a regular splitting of Fax(P). Then, if
C(Nax(P)) are Horn axioms, the corresponding program is the complement of P in the sense
of [5].

392 Regular Search Spaces and Constructive Negation

PROOF. Since C(Nax(P)) are Horn axioms, there are no local variables. If P U {«- A)
finitely fails, by Corollary A.12 (in the Appendix), there are ||pi.4|| U • • • U ||pn.4|| D ||i4||
such that each \\ptA\\ hasanF-proofwith axioms from Fax(P). By the aforementioned mild
version of Theorem 5.5, each ||pt^4|| has a P-provable covering with axioms from Nax(P).
Therefore there is a finite covering of Ac that is P-provable with axioms from C(Nax(P)).M

EXAMPLE 5

Consider the

A regular

.11
< relation defined as follows

Axl : 0 < X
Ax2 : s{X) <

splitting of the failure axioms is:

Nax(0 < X) : Vz(
Nax(s(X) < s{Y)) : Vz,
Nax(s(X) < 0) : Va;(

s(Y)

y(^x

<-.Y

<y -
<0)

<Y.

0<x)
< s(y))

From C(Nax(s(X) < s(Y)),Nax{s(X) < 0)) (omitting the redundant first axiom) we
extract:

s{X)<c0.
s(X) <c s{Y) <- X <c Y

which is the complement of the program for <.

We conclude with an example of regular instance with a non-Horn translation. Vx(even(x)
—¥ 3y.sum(y,y,x)) is translated into Vx(Vy.sumc(j/,y,a;) —* evenc(x)). A possibility of
accommodating the above axiom in the Horn setting would be to consider y as a new con-
stant, thus obeying the proviso that eigenvariables cannot be substituted. However, even if a
regular splitting might give rise to a regular search space and translate the original program
into a program executable by SLD-resolution, we do not achieve, in this case, the possibility
of answering negative open goals, due to the presence of eigenvariables, and DC A is needed
(see Theorem 5.5). This corresponds to the well-known problem of the treatment of local vari-
ables during complementation, which requires an extension of standard SLD-resolution (see
following section).

6 Related work

6.1 Constructive negation

Constructive negation is an attempt to devise methods capable of providing logically justi-
fied answers to non-ground negative queries, in analogy with the witnessing property of con-
structive logics [50]. Formally, fora suitable derivability relation, this property holds when, if
h 3xp(x), then there is a term t s.t. h p(t). Accordingly, it is suggested that from h 3x-<p(x)
the same property infers a term t s.t. I—<p{t). We can roughly distinguish two approaches:

i. Program transformation: [41, 13, 5].

ii. Negation by constraints: [51] for Datalog programs, [8,9] for Prolog, extended to CLP in
[49]; fail substitutions: [45, 29].

Regular Search Spaces and Constructive Negation 393

Historically, the original attempt to deal with negation was simply to try to avoid the floun-
dering phenomenon: given that the latter is in general undecidable, one possibility is to try to
make sure that when a negative literal is called it has already been grounded: there are basi-
cally three possibilities:

1. Satisfy the syntactical, although very restrictive, conditions on allowed computations [43],
which essentially reduces evaluation to ground evaluation.

2. Try to achieve grounding by delaying, as in [M]NU-Prolog or Sicstus, where a goal may
be declared to be 'frozen' and is evaluated only when it reaches a sufficient degree of in-
stantiation. This is obviously only a partial solution, since at run-time there is no guaran-
tee to eventually ground the problematic query. A further improvement is offered by the
computation rules of IC-Prolog (see [36], for a comprehensive analysis and references).

3. Covering the open negative query with a generator of values for the relevant variables [13].

6.1.1 Static approaches
If we are dealing with datalog programs, i.e. with finite Herbrand Universe Up, the naive ap-
proach would be to instantiate all the rules with potentially troublesome goals with terms from
Up [1], say through propagation in every negative literal in the program. This is clearly infea-
sible, since it may result in an intractable number of rules, proportional to all the permutations
of arguments over Up; besides, this may return many undesired (untypable) answers.

A sophistication of this idea can be found in [13]: the proposal is to automatically infer a
'type', seen as a set of facts, for the problematic variables and transform the original program
into one where grounding is ensured by the coverage from those types. Then useless answers
originating from general instantiation would be excluded by the typing discipline. Although
it can be shown that the new program is equivalent to the old one, this cannot be extended
to full Prolog: function symbols make the type infinite and non-ground facts undermine the
instantiation capability of the type.

The transformational approach has a fairly long history—see [36] for a survey of the early
1980s. The idea is to implement negation using inequalities, so that the complement of any
predicate occurring negatively in the original program P is synthesized in order to obtain an
equivalent definite program Pc (in the sense of Fp — Mpc). This was first proposed in [41].
In this seminal paper it is shown how to massage the completion so that the derived program
mimics failed computation of the original one. The technique consists essentially in taking the
contrapositive of the completion, putting the right-hand side in disjunctive normal form and
eliminating the universal quantified inequalities by introducing a 'non-unifiable' predicate.
From the simplification of those constraints and by regarding the negated predicate as a new
name the new definition is obtained.

Two interrelated problems are involved in this simple transformation:

1. We need a way to solve the aforementioned inequalities: this was first suggested in [22] in
the general context of explicit representation of generalization and refined in [24]; there it
is shown that the uncover algorithm may simplify those constraints into canonical forms
but also that this simplification is not achievable in general. Another version, specifically
calibrated to logic programming and constructive negation, is given in [17].

394 Regular Search Spaces and Constructive Negation

2. The presence of local variables is problematic, as they turn out to be universally quantified
in the target program and therefore outside the scope of SLD-resolution.

There have been several partial solutions to the above problems: [41] proposes to use a more
general fold/unfold transformation system. In [5] it is proposed to compute the set-theoretic
complement of the terms in the negative predicate, compiling away the inequalities. See [7]
for a more updated presentation of intensional negation.

In the light of the analysis in [24], it is worthwhile comparing the two approaches: the Sato
and Tamaki format [41] requires locally stratified possibly non-left-linear many-sorted pro-
grams with no local variables. There is no explicit mechanism to handle inequalities, yet a
sketch of the adequacy of the procedure is offered. The Barbuti et al. format [5] demands flat
(non-stratified programs) with local variables provided they are not shared in the body.

The latter yield non-Horn programs with extensional universal quantification, whose oper-
ational interpretation is refined from the generate-and-test approach [5] to the idea of proof
by case analysis [30] . Left-linearization reintroduces inequalities giving more impulse to the
move to CLP languages, as proposed in [26].

It can be shown that Barbuti's and Sato's transformations are equivalent w.r.t. success for
left-linear programs. Hence, our proof-theoretical reconstruction of intensional negation will
work for the Sato transformational approach as well.

6.1.2 Dynamic approaches
Chan [8] is acknowledged to be the inventor of the term 'constructive' negation; his approach
can be roughly characterized as a mix of NF with a constraints-solving attitude. In essence
it consists in taking a negative goal, calling the positive version and negating the answer ob-
tained. As in the CLP family, unification and disunification are kept explicit and returned as
solutions. The key observation is that if G is a goal and A\,..., An the answer substitutions
(treated as atoms), G «•+ Ai V . . . V An is a logical consequence of the completed database.
Therefore the answer to ->G is the negation of the answers to G. Of course, there is some work
to do in keeping the (in)equalities tidy (normalized answers) and there are some obvious prob-
lems when dealing with computations that have infinite answers, fixed in [9] by quantifying
over the answer substitutions. No proof of completeness is offered. A very neat generaliza-
tion to constraint logic programming over arbitrary structures is offered in [49]; it turns out
to be sound and complete w.r.t. the three-valued models of the completion. A further gener-
alization is presented in [12]. Constructive negation has been also studied in the context of
disjunctive logic programming [28] and of functional logic programming [34], where it ex-
tends the narrowing-based procedural semantics.

(E)SLDNF - S [45]: The finite failure case in the definition of SIZWF-resolution is
modified as follows: given the goal «- (F, ->J4), then it has a child «- 9T, if there is a finitely
failed-tree for <- 6A, where dom(6) C vars(A). So NF instantiates under success, i.e. nega-
tive goals directly return substitutions: given P and G the aim is to look for a (fail) substitution
6 s.t. P U {6G} has a finitely failed tree; then by the soundness of the NF rule V0->G is a con-
sequence of comp(P) and thus 9 is an answer for the query «— ->G. This seems very costly,
since it allows a full-fledged dimension to substitutions.

This is refined in [29], where it is shown how to avoid generating all possible substitutions
in lieu of a maximal general fail substitution. Moreover, an improvement w.r.t. Chan's work
lies in the feature of always including some positive bindings for the variable in the negated
goal. If the SLD-tree is infinite, the method enumerates the set of fail substitutions.

Regular Search Spaces and Constructive Negation 395

6.2 Non-failure driven negation

Over recent years, ways of incorporating other more logical forms of negation than NF have
appeared. Since most of the time this gives back full non-clausal-logic, most of them are cat-
alogued as ATPs. In all these accounts, negative information has to be provided explicitly and
specific rules are offered to deal with that. Sometimes it is possible to mix OWA and CWA
predicates safely. Without the pretense of being exhaustive, we still have to quote some of the
most known proposals: for a more detailed account and bibliography, let us refer to [40].

• N(Q)Prolog [14] and Negation as Inconsistency [15]: the former is a complete implemen-
tation of positive intuitionistic logic. By defining disjunction classically and allowing a
restart rule, Gabbay shows it to be complete for full classical logic as well. The latter
evaluates a query against an ordered pair (P, N), where P is a Horn program and N a
set of queries that are required not to succeed; this is logically equivalent to adding to the
program the negation of all the members of iV, and permits importing negative facts and
rules. Both systems have a very awkward first-order version.

• Stickel's PTTP [48] supplementsSLD-resolution with the model elimination rule to offer
a complete method for full clausal logic. This entails keeping track of the ancestors of the
goal, losing one of the key feature of Prolog, namely input resolution.

• Loveland's nHProlog [40] incorporating case analysis in SLD-resolution demands each
time the invocation of a restart rule, until the stack of unsolved (disjunctive) heads is empty.
Without requiring contrapositives as PTTP, it simulates case analysis with different runs
of essentially the Prolog engine. Unfortunately naive nH-Prolog is incomplete and the
new versions (Progressive nH and Inheritance nH) have a less natural and convincing de-
scription.

• Another close relative goes under the name of disjunctive logic programming (see [39]
and references therein). It aims to deal with full clausal logic by extending the machinery
for Horn Logic. In particular the procedural semantic, called SLO-resolution, extends the
SLD-step by having the selection function choose a clause in the current goal (a sequence
of clauses) and trying to find a clause whose head subsumes it; if successful, the goal is
incremented by the body, without deleting the selected clause.

7 Conclusions

We are in the process of fulfilling the promise made in [33], where we claimed that quite a lot
of topics in the logic programming literature would benefit from a proof-theoretic reading. We
have shown here that from this perspective much of the mystery of NF disappears or at least it
is brought back to standard issues in basic proof-theory. Moreover this is more evidence of the
fruitfulness and explicative power of the notion of regularity as an abstract characterization
of SLD-resolution. Indeed we have indicated how constructive negation can be seen as a side
effect of regularizing normal programs.

Once the basic theory is digested, the reconstruction of the core of intensional negation (say
until [5]) has been accomplished with very little effort. The splitting method for restricted
terms is based on Lassez's uncover algorithm for the relative complement problem. A well-
known and elegant approach to the foundation of NF is to address it in the CLP-framework
[49,25]. Nevertheless we believe it is interesting to try to stretch the traditional tools of logic
programming, therefore gaining a more in-depth understanding of their limits. In particular,
it is worthwhile to investigate how far the sophistication of the splitting method, for example

396 Regular Search Spaces and Constructive Negation

in the direction of a recursive representation of the covering of unrestricted terms, can bring
us.

As we have mentioned several times, our main interest is to test the framework of regular
search spaces with a relevant application as (constructive) negation. The paper is not meant to
try to present original results in the subfield of negation in logic programming, but to formulate
a logical revision of a possibly obsolete version of constructive negation in simple terms. At
the same time, we think that some new issues have manifested.

It is easy to show the completeness of the PF-system w.r.t. the three-valued semantics of
the (weak) completion, although limited to the case where eigenvariables are not involved.
We also believe that some new insights can be gained concerning the issue of fail substitu-
tions, which is related to the DC^-schema. Moreover, the need for the latter in complete
logic programs [30] has been further highlighted.

In conclusion: while it is clear that the first steps for a new framework are the formaliza-
tions of more or less well-known problems in the field, we hope to show that the theory of
regular search spaces can be fruitfully used in front-line subjects such as more general pro-
gram transformation techniques.

Acknowledgements

We would like to thank Roy Dyckhoff, Frank Pfenning, Robert Stark and two anonymous
referees for helpful comments on various drafts of this paper.

References
[1] K. A. Apt, H. A. Blair and A. Walker. Towards a theory of declarative knowledge. In Foundations ofDeductive

Databases and Logic Programming, J. Minkcr, ed. pp. 89-148, Morgan Kaufmann, Los Altos, CA, 1988.
[2] K. A. Apt. Logic programming. In Handbook of Theoretical Computer Science, i. Leuween, ed. Elsevier,

Amsterdam, 1990.
[3] K. A. Apt and R. Bol. Logic programming and negation: a survey. Journal of Logic Programming, 19, 9-71,

1994.
[4] R. BartMiti, P. Mancarella, D. Pcdreschi and F. Tunni. Intensional negation of logic programs. In Proceedings

ofTapsoft'87, Vol. 259 of Lecture Notes in Computer Science, pp. 96-110. Springer-Vertag, Berlin, 1987.
[5] R. Barbuti, P. Mancarella, D. Pedreschi and F. Turini. A transformational approach to negation in logic pro-

gramming. Journal of Logic Programming, 8, 201-228, 1990.
[6] N. Bidoit. Negation in rale-based database languages: a survey. Theoretical Computer Science, 8, 3-83, 1991
[7] F. Bruscoli, F. Levi, G. Levi and M C. Meo. Intensional negation in constraint logic programming. In Proceed-

ings ofGULP93, D. Sacca, ed. pp. 359-373. Universita della Calabria, 1993.
[8] D. Chan. Constructive negation based on the completed database. In Logic Programming. Proceedings of the

Fifth International Conference and Symposium, R. Kowalski and K. Bowcn, eds. pp. 111-125. The MIT Press,
Cambridge, MA, 1988.

[9] D. Chan. An extension of constructive negation and its application in coroutining. In Logic Programming.
Proceedings of the 1989 North American Conference, E. Lusk and R. Overbeek, eds. pp. 477-493. The MIT
Press, Cambridge, MA, 1989.

[10] K. L. Clark. Negation as failure. In Logic and Data Bases, H. Gallairc and J. Minker, eds. pp. 293-322. Plenum
Press, New York, 1978.

[11] H. Comon. Disunification: a survey. In Computational Logic, J.-L. Lassez and G. Plotkin, eds. pp. 322-359.
The MIT Press, Cambridge, MA, 1991.

[12] W. Drabcnt. What is failure? An approach to constructive negation. Acta Informatica, 32, 27-59, 1995.
[13] N. Foo, A. Rao, A. Taylor and A. Walker. Deduced relevant types and constructive negation. In Logic Program-

ming. Proceedings of the Fifth International Conference and Symposium, R. Kowalski and K Bowen, eds. pp
126-139. The MIT Press, Cambridge, MA, 1988.

Regular Search Spaces and Constructive Negation 397

[14] D. M. Gabbay and U. Reylc. N-Prolog: an extension of prolog with hypothetical implications: 1. Journal of
Logic Programming, 1, 319-355, 1984.

[15] D.M. Gabbay and M. Sergot. Negation as inconsistency: I. Journal of Logic Programming, 3, 1-36, 1986.
[16] J. H. Gallier. Logic for Computer Science. Foundations of Automatic Theorem Proving. John Wiley, New York,

1987.
[17] J. Harland. On Hereditary Harrop Formulae as a Basis for Logic Programming PhD Thesis. Edinburgh, 1991.
[18] J. Harland. A clausal form of the completion of logic programs. In Logic Programming. Proceedings of the

Eighth International Conference, K. Furukawa, ed. pp. 711-725. The MIT Press, Cambridge, MA, 1991.
[19] R. S KempandG. A. Ringwood. Reynolds and Heyting models of logic programs. In Proceedings of the post-

Conference Workshop on Proof-Theoretical Extension of Logic Programming (PTELP'94), A. Momigliano and
M. Ornaghi, eds. pp. 99-108. Universita di Milano, Milano, 1994.

[20] M. R. Krom. The decision problem for a class of first-order formulas in which all disjunctions arc binary. Zeit.
math. Logik, 13, 15-20, 1967.

[21] K. Kunen. Negation in logic programming. Journal of Logic Programming, 4, 289-308, 1987.
[22] J.-L Lassez and K. Mamot. Explicit representation of terms defined by counter examples. Journal of Automated

Reasoning, 3, 301-317, 1987.
[23] J.-L Lassez, M. J. Mahcr and K. MarrioL Unification revisited. In Foundations of Deductive Databases and

Logic Programming, J. Minker, ed. pp. 587-626. Morgan Kaufmann, Los Altos, CA, 1988.
[24] J.-L. Lassez, M. J. Mahcr and K. Marriot. Elimination of negation in term algebras. In Mathematical Founda-

tions of Computer Science. A. Tarlecki, ed. pp. 1-16. Springer-Verlag, Berlin, 1991.
[25] J.-L. Lassez and M. J. Maher. Constraint logic programming: a survey. Journal of Logic Programming, 20,

503-581, 1994.
[26] F. Lcvi. Constructive Negation and Universal Quantification. MS Thesis, Universita di Pisa, 1992.
[27] J. W. Lloyd. Foundations of Logic Programming. Second Extended Edition, Springer-Verlag, Berlin, 1987.
[28] J. Lobo. On constructive negation in disjunctive databases. In Logic Programming. Proceedings of the 1990

North American Conference, S. Dcbray and M. Hermcnegildo, eds. pp. 694-705. The MIT Press, Cambridge,
MA, 1990.

[29] J. Maluzinski and T. Naslund. Fail substitutions for negation as failure. In Logic Programming Proceedings of
the 1989 North American Conference, E. Lusk and R. Overbeek, eds. pp. 461 -476. The MIT Press, Cambridge,
MA, 1989.

[30] P. Mancarclla, S. Martini and D. Pedreschi. Complete logic programs with domain closure axiom. Journal of
Logic Programming, 5, 263-276, 1988.

[31] D. Miller, G. Nadathur, F. Pfenning and A. Scedrov. Uniform proofs as a foundation for logic programming.
Annals of Pure and Applied Logic, 51, 125-157, 1991.

[32] D. Miller. A logical programming language with lambda-abstraction, function variables and simple unifica-
tion. In Extensions of Logic Programming, P. SchrOder-Heister, ed. pp. 253-281. Vol. 475 of Lecture Notes in
Artificial Intelligence, Springer-Verlag, Berlin, 1991.

[33] A. Momigliano and M. Omaghi. Regular search spaces as a foundation of logic programming. In Extensions of
Logic Programming, R. Dyckhoff, ed. pp. 222-254. Vol 798 of Lecture Notes in Artificial Intelligence, Springer-
Verlag, Berlin, 1994.

[34] J. J. Moreno Navarro. Extending constructive negation for partial functions in lazy functional-logic languages.
In Extensions of Logic Programming, R. Dyckhoff, H. Herre and P. SchrOder-Heister, eds. pp. 213-228. Vol.
1055 of Lecture Notes in Artificial Intelligence, Springer-Vcrtag, Berlin, 1996.

[35] G. Nadathur and D. Miller. An overview of AProlog. In Logic Programming. Proceedings of the Fifth Interna-
tional Conference and Symposium, R. Kowalski and K. Bowen, eds. pp. 810-827. The MIT Press, Cambridge,
MA, 1988.

[36] L Naish. Negation and Control m Prolog. Vol. 239 of Lecture Notes in Computer Science, Springer-Verlag,
Berlin, 1985.

[37] F. Pfenning. Unification and anti-unification in the calculus of constructions. In Proceedings of the Sixth IEEE
Symposium on Logic in Computer Science, pp. 74-85, 1991.

[38] D. Prawitz. Natural Deduction. Almqvist and Wiksell, Stockholm, 1965.
[39] A. Rajasckar, J. Minker and J. Lobo. Foundations of Disjunctive Logic Programs. The MIT Press, Cambridge,

MA, 1992.
[40] D. W. Reed and W. D. Loveland. A comparison of three Prolog extensions. Journal of Logic Programming, 12,

25-50, 1992.

398 Regular Search Spaces and Constructive Negation

[41] T. Sato and H. Tamaki. Transformational logic program synthesis. In Proceedings of the International Confer-
ence on Fifth Generation Computer Systems, 1984.

[42] H. Schwitchtcnberg. Some applications of cut-elimination. In Handbook of Mathematical Logic, J. Barwise,
ed. pp. 867-896. North-Holland, 1977.

[43] J. C. Shepherdson. Negation as failure (II). Journal of Logic Programming, 3, 185-202, 1985.
[44] J. C. Shepherdson. Negation in logic programming. In Foundations of Deductive Databases and Logic Pro-

gramming, J. Minker, ed. pp. 19-88. Morgan Kaufmann, Los Altos, CA, 1988.
[45] J. C. Shepherdson. A sound and complete semantics for a version of negation as failure. Theoretical Computer

Science, 65, 343-371, 1989.
[46] W Snyder. A Proof-Theory for General Unification. Birkhauscr, Boston, MA, 1992.
[47] R. Stark. The Proof-Theory of Logic Programs with Negation. PhD Thesis, University of Bern, 1992.

[48] M. Stickel. A Prolog technology theorem prover: a new exposition and implementation in Prolog. 464 SRI
International, Technical Note, 46, 4, Menlo Park, CA, 1989.

[49] P. Stuckey. Constructive negation for constraint logic programming. In Proceedings of the Sixth IEEE Sympo-
sium on Logic in Computer Science, pp. 328-339. IEEE Computer Society Press, 1991.

[50] A. S. Troesltra and D. van Dalcn. Constructivism in Mathematics. Vol 1-2. North-Holland, Amsterdam, 1988.
[51] M. Wallace. Negation by constraints: a sound and efficient implementation of negation in deductive databases.

In Proceedings of the IEEE International Symposium on Logic Programming, pp. 253-263. IEEE Computer
Society Press, 1987.

Appendix

A Proof of the finite failure theorem
We now detail the proof of the finite failure theorem (Theorem 4.4). To achieve that, we need to introduce quite a
number of definitions and properties of partial (see below) and finitely-failed SLD-trees, before we may embark on
the proof of some crucial lemmata. The theorem follows as a corollary of Theorem A. 14, that generalizes the left-
linearity requirement with the existence of a regular partition of Fax(P).

DEFINITION A.I

A partial SLD-tiee for P U {G} is any initial subtree * p of a SLD-tiee for P U {G}. Let O be (the goal in) a leaf
of <t>/> and A be the corresponding selected atom If A is not failed w.r.t. P, then we say that A and O arc open in
*P.

DEFINITION A.2

A selection function is local if at any stage the selected atom belongs to the most recently introduced ones. A SLD-trcc
has local selection if it is built via a local selection function.

We will denote with * p (G | H) a partial (possibly finitely-failed) SLD-trce for P U {G} with open selected
atoms H = H\,..., Hn- When inferible from the context we will omit the subscript p.

DEFINITION A 3

Let «— M,-4, N be a goal, and A' •(— Bavarian! of a clause: if A = cr A', then •(- M , u B , N is a resolvent. In this
case we say that <- M , C T B , N is a plain resolvent of <- M , i 4 , N . A SLD-iree is plain if, for every non-terminal
node G, the children of G arc plain resolvents of G. Moreover we say that * does not introduce local variables if
the applied clauses do not have local variables.

We also need the following extension of the subsumption ordering:

DEFINITION A.4

H < H ' iff Vf/ 6 H 3H' £ H ' : H < H'.

PROPOSITION A.5 (Substitution)

Let <t>p(G | H) be a partial SLD-Ucc and a a substitution. Then there is a partial SID-tree * p (a G | H ") such
that:
I. If A is selected in G, then a A is selected in oG, H " < H, and for every open goal O" of 4>p, there is an open

goal O of 4>P such that O " = aO.

Regular Search Spaces and Constructive Negation 399

2. If 4>p has local selection, then so docs <J>p.

PROOF. By induction on the height of * .

• Basis. We have the following cases:

- * (G | 0) contains just the goal G and the selected atom A is failed: then #"(<xG | 0) contains just oG, with

(failed) selected atom a A;

- * (G | A) contains just G and the selected atom A is not failed; then * " is either $a(oG \ a A) (if a A is not

failed), or <S>°(oG | 0) (if a A is failed).

• Step. * (G | H) has immediate subtrees * i (G i | H i) , . . . , * n (G n | H , ,) , where G i , . . . , G n are the re-

solvents of G w.r.t. the selected A. The resolvents of oG with respect to a A are {,, Gi, , . . . , 6>,n G, . By
{, 6,.

the inductive hypothesis, for 1 < j < m there are * ' (S, G, I H ') such that I and 2 are satisfied

(w.r.t. $,} {Gt] | H t j)) . Then *" is the SLD-uee that has root oG, selected atom a A, and immediate subtrees

*^> (SilGil | H f j 1) , . . . , * S (<5MG,, | H^'1). One can easily check that i" satisfies I. Point 2 follows

from the fact that the selected atoms in the roots of the subtrees of * ' are preserved.
* 1

We will say that $" has been obtained from * by substitution. In the following, * " will be the SLD-ttee that is
built up recursively, according to the above proof. For plain trees we have:

PROPOSITION A.6

Let &p(G | H) be a plain SLD-atc, and a be a substitution. Then $a
p{aG | H") coincides with the tree that is

obtained by the application of a to every nodes of 4> and HCT C <rH.

PROOF. By induction on the height of <J>.
• Basis. The proof is as in Proposition A.5.

• Step. * (G | H) has immediate subtrees * i (G i | H i) , . . . , $ n (G n | H n) . Since G i , . . . , Gn are plain
resolvents, the resolvents ofcrGaretrGi,. . ,oGn. Then the proof follows from the inductive hypothesis applied
to the immediate subtrees.

In the next proposition, we will use the following weakening operation. Let * p (G | H) be a partial SLD-Uce,
and G a subgoal of G'. Then one can build a partial SLD-lrcc *p (G' | H') by adding the (appropriate instances of
the) new atoms of G' to all the nodes of *. It is clear that
• H' = H

• If * has local selection, then does "t""7

• If * is plain, so is **".

PROPOSITION A.7

Let*/»(G | H) be a plain partial 5LD-trce. Then there is a plain partial SLD-Vcc with local selection * ' p (/ / | H'),
where H e G and H' C H.

PROOF. By induction on the height of $. The basis is obvious. For the step, let G be «— M, A, N, and let A\ «—
B i , . . . An <— B n be the parent clauses such that A = <7\A\,... ,A = anAn (being * plain). Let #i(M,<T,B;,
N | H,) be the immediate subtrees. By the inductive hypothesis we obtain n plain *',(//< | HJ) with H'{ C H,.
For the sake of readability, we consider the case n = 2. If Hi € M, N, we take *', as the desired tree, else, if
Hi G M , N , we take $'2 as the desired tree. If none of the above holds, then Hi £ a B i and / / j e o-B2,andone
can easily build the plain tree &(A | H , , H'2) with subtrees obtained by a suitable weakening on $'{(H, | H J) - '

Now we can start to prove our theorem. The proof follows from some lemmata that link partial SLD-tices to F-
proofs.

LEMMA A.8

Let 4>/>(G | H\,..., / /„) be a partial SLD-wc with local selection and A be selected in G: then there is a proof of
-•A in the F-system with assumptions -*H\,..., ->Hn, that uses only axioms from Fax(P).

PROOF. By induction on the height of the partial SLD-tice.
• Basis. * has height 0: we have two cases.

400 Regular Search Spaces and Constructive Negation

T A\ i . . . , /I j , . . . ,

n, nh
j kn(p)

FIG. 3. From partial SLD-trees to F-proof-trees

- 4> is failed. Then no clause head of P unifies with the selected A, = p(a) . Hence A 6 ?(-*A,, Foxkl t n

(p)) , where Faxklt...,in(p) is any failure axiom of Fax(p), and we have a F-proof of-iA,.
- * is not failed. Then we have the trivial proof ->A, from assumption ->A,.

' Step. 4> has the form indicated in the left-hand side of Figure 3, where A, = p(a) is the initial selected atom, and

for 1 < j < h, cr} B, ikt is the atom selected in the immediate descendant cr, M ^ . Note that, by the property

of local selection, the former has been just introduced and does not belong to +- Ai,... ,A,-i,A,+i,... ,Am.

Thus there is a partial tree ^j(ajBi} <k. | H ,) with local selection. Now, Vx(p(x) - f V " = i ^ ' (x = *• ̂

M ,)) is the only-if definition of p (. . .) , and for 1 < j < h, a unifies with Ui with mgua^. Therefore there is a

failure axiom
n

Faxkl kJp) =Vi (p (x) -+3y\J(x = tiA B,,*,)).
i=l

By the inductive hypothesis there is aF-proof rij :: -KT} Biiik% with assumptions -•H,-, as suggested by the dots

at the top of the right-hand side of the figure. Moreover, since t, unifies with a with mgu Oj

-^iBiltkii;...;^ThBih^h £ F(-p(a), Faxku...,kjt(p)).

Hence we can build the trees on the right and with one application of the F rule derive -*A,. Note that here no
problem with eigenvariables arises.

D E F I N I T I O N A .9

A set A of atoms is F-refuted by a program P if there are F-proofsri i :: -XTIHI,. . . , n ^ :: -•akHk with axioms
from Fax(P) such that {Hi,... ,Hk] C A and ||CTI A | | , . . . , ||<rt A | | is a covering of | |A| | .

LEMMA A.10
Let &p(G | H) be a plain SLD-tree which does not introduce local variables. If every open goal O of * p is
F-refuted by P. so is the root G.

P R O O F . Let Oi,..., Ok be the open goals of * . For 1 < t < fc, let H'} :: -XT'J H* (with 1 < j < m .) be the
F-proofs that F-rcfute O, . Consider the substitutions

^ = «'*«.... •<)

and let * - (G I H1 , . . . , Hk) be the tree equal to * , but selecting H) ,..., H) in the open goals. By Proposi-

tion A.7, there is * i o c (^ | / / • , . . . , / / *) with local selection function, such that A 6 G. We can thus apply <r-

to */„<; and obtain * (< ^ (u - A \ H " ' I =) s.L u"~>i- C {c- Hj^,..., cj H^} (Proposiuon A.6). By Lemma

A.8 there is a proof n :: -xr- A with assumptions belonging to ^ H "<, and the latter have F-proofs with axioms

from Fax(P) (indeed, in the F-system, an instance of a provable formula is provable by the same axioms). Now we

have to prove that thai the set of all the ||cr— G\\ is a covering of | |G|| . This follows from the fact that, for 1 < i < k,

||CT* O, I I , . . . , | | c r^ .O, | | is a covering of the open goal | |O, | | ,and the variables of the open goals are a subset of the

ones of G. as <t> is plain and does not introduce local variables. I

L E M M A A. 11 (Factorization)

Let <t>p(G | H) be a partial SLD-tree that does not introduce local variables and assume that every failure axiom
Fax(p) of P has a regular splitting. Then there is a factorization 4>i (piG | H i) . . . , * „ (/ > „ G | H n) such that:

Regular Search Spaces and Constructive Negation 401

1I) for 1 < j < n, each open goal of *,- is an instance of some open goal of * . Hy < H and * , is a plain
SLD-uee which docs not introduce local variables;

(2) | |p, G\\,..., \\PnG\\ is a covering of | |C| | .

PROOF. By induction on the height of*. The basis is obvious. The step goes on as follows. LetGbe't— M , p (t) , N ,
and let ->p(ai) , . . . ,-rp(an) be the regular heads of Fax(p) such that ftj = mgu{p(i),p(aj)) is defined. Then
||p(Mi Oil, • • • > l|p(/*nOIIis a covering of of ||p(0ll- Therefore \\p.i G\\,..., ||/m G|| is a covering of ||G||, and we
can construct a first factorization 4>''1 (p-iG | H ^ 1) . . .*>*" (pnG | HM"), by the substitution operation Then we
further factorize eiich * ^ (H3 G | H ^ J) as follows.

Let *} (G\ | H[),..., *Jmj (G ^ , I H ^) be the immediate subtrees of *"J (MJG | H ^ J). By the inductive

hypothesis, each <t>̂ , 1 < h < m j , can be factorized into plain trees 4 ^ j(p^ jG^ | H{ j) , . . . ,<t^ i (p3
 J

G3
h | H J) that satisfy (I), (2) (w.r.t *{) . In particular, ||p> jG J J | | | ^ G JJ| is a covering of | |G{||.

h,kh ' h,kh

Now, let us consider the combinations such that pi = glb(p\ t , . . . , f?m tm) is defined. Then, for every h

such that 1 < h < rrij there is a cr^ such that pi = ^P'h t ' ant'> ^ ^ substitution operation, we can build
'"j

the tree:

Notice that p.} G = n}M, p(fijt), p.}fi, where p(/Jjt) = p(/ij a^) and p(a_,) is a regular instance. Therefore
pi G j , . . . ,pi G3

mj are the plain resolvents of pi fi} G, and we can build the 5LZ)-trce:

« (pi ^G | HJ^ ,---,HZ'X-)

y jo3
ln

which has * 1 (' , . . . , <J>m (
J as the immediate subtrees. One can check that every <t>£ satisfies (1).

Now we prove (2). Since (for 1 < j < n) fij G has plain children and no eigenvariable is introduced, the variables
of the children G\,..., G]

mj are contained in the ones of ftj G. By inductive hypothesis, for 1 < h < m},

||p^ ,G^ | | Wf? _, G^ll is a covering of | |G^||. Then one can show that the collection of the \\pi /*_,G||

(w.r.t. the possible choices of ti,..., £m) is a covering of | |^j(7||. Therefore, the entire collection (w.rt. the possible

choices of j , t i , . . . , tmj) is a covering of ||G||. I

COROLLARY A.12

Let P be a program which admits a regular splitting and let <t>p (G | H) be a partial SLD-tree that does not introduce
local variables. If every open goal O of * p is F-refuted by P , so is the root G.

PROOF. By Lemma A.I 1, we can factorize * p . Since the open goals of the SLD-lrtes of the factorization are in-
stances of open goals of* p , the former are F-rcfuted by P. Then we can apply Lemma A. 10 to every plain element
of the factorization. I

In order to treat the case of local variables, we need stronger hypotheses. First of all, DC A is required. Moreover,
we will assume that the program admits a deterministic splitting, namely a splitting where ||p(a,-) ||n||p(a,-) || = 0, for
i 5it j . and we will deal with disjoint coverings, where a covering | | p i G | | , . . . , | |pnG|| is disjoint if any two distinct
elements of it are disjoint. Starting from Definition A.9, everything can be restated by using FDCA -proofs instead of
F-proofs, disjoint coverings, instead of coverings, and deterministic splittings instead of regular splittings. Indeed,
from now on, we will use appropriately modified versions, in the above sense, of previous results in the Appendix.

LEMMA A. 13
Let P be a program that admits a deterministic splitting and let <J»p(G | H) be a finitely failed SLD-tree for P u { G } .
If the open goals of 4>p are FQCA -refuted by P, then so is G.

PROOF. By induction on the number of clauses that introduce local variables in * .
Basis. The proof follows from Corollary A. 12.
Step. For the sake of readability, we assume that P contains only one clause p (r) <- A' for its definition, where

K introduces the local variables v. * p can be decomposed into a partial SLD-Uec <t>o(C \ p(t\),... , p (t n)) that

402 Regular Search Spaces and Constructive Negation

does not introduce local variables and n finitely failed SLD-trees $j(Gj | H j) , where, for 1 < j < n, Oj is the
open goal of *o selecting p(tj), and the root of &j is the resolvent of O, with parent clause p(r) <- K.

By Lemma A 11, there is a factorization of <t>o into plain SLD-trees*1 (pi G | H 1) , . . . , * n (p n G | H ") . LetO
be an open goal of Q>: we further factorize 4^ w.r.t. O, as follows. O is of the form •(— M , p (i) , N , where p(t) uni-
fies withp(T). A disjoint covering of ||p(t)|| is | | p (p ia i) | | , . . , ||p(/i/iah)||. where P(<H) , . . . , p (a h) are the reg-
ular heads of Fax(p) such that fi, = mgu(j>(t),p(a,)) is defined. By the substitution operation, we build the SLD-
trecs *-"'>(ji lpyG | » ") , - - , *) / i h W j G I H-"' '-). For 1 < t < h, *•"'• contains the open atom p(p,a ;)
in the place of p(t), since mt — fi,ai and *J is plain (by Proposition A.6). Notice that | | / J I /> ;G | | , . . . , | |^hPjG||
is a disjoint covering of \\pj G\\, as the variables of p}G contain those of p(t) (indeed ^ is plain and does not intro-
duce local variables). Now we can further factorize each SLD-tree of {$"*• (mpjG | H-"1")} w.r.t. another open
goal, and go on in this way, until we obtain a final factorization of 4^ , where each open atom is an instance of some
regular head of Faxip).

If we put the final factorizations o f* 1 , . . . ,4>n together, we get a factorization &\{&\.G | H ' j) , . . . ,$'Z(5ZG \
H' z) of 4>o(G | Ho). Since at each factorization step we have built a disjoint covering of an element of a previous
disjoint covering, | |c5iG|| , . . . , ||<5iG|| is a disjoint covering of ||G||. Therefore, if we can show that the open goals
of each * ' (with 1 < j < z) are FQCA-^^A by P, we can apply (the modified version of) Corollary A.12 to
each $'j, and we are done.

j (1 < j < z) be be a substitution of the above factorization. The tree * p (obtained by substitution from

can be decomposed into an initial subtree $'(&jG \ p (6 i) , . . • ,p(bT)) and r subtrees * i (Q i | H j 7) , . . . ,

* r (Q r | H ? ') such that:
• * ' (5 j G | p (6 i) , . . . , p(6 r)) coincides with *^((5_,G | H^);

• for 1 < i < r, the goal containing p(b.) is of the form <- M i , p (6 ,) , N , and Q; is its plain child, of the form
<— M , , 6 , / f , N , (p(bi) is of the form 0,P(T), since it is an instance of some regular head of Fax(p)).

For 1 < t < r , the open goals of*, are instances of open goals of * p , hence they are F ^ c ,4-refuted by P. Since
the substitution operation does not increase the height of a tree, we can apply the inductive hypothesis to the subtrees
* i . . . , * r - Therefore, for 1 < i < r, the se tM, , 0,/C,N, is FDCM-refuted by P . Let 0,K be K'{x,y), where
y are the suitable renaming of the local variables, and let

be the FpcA -proved formulae, where C\,...,CU belong to M , , N , . Since we have a disjoint covering and y arc
not in the domain of f}\,... ,/3u,for 1 < m < 5, K ' (7 m (x) , y) must be covered by 71 K' (x , y),... ,y,K'(x,y).
Since the latter have FpcA -proofs, by an application of the DC-4-instance V(Vtu(-i7i iC'(x,y) A- • A-"7»/C'(x,
y)) -t- - .K ' (7 m (x) ,y) we get an FD C4-proof of ^ K ' (7 m (x) , y) . Since - K ' (7 m (x) , y) e F (^ 7 m p(6 ,) .
Fax(p)) , we get a Foc/i-proof of-.7mp(6,). Therefore ->^iCi , . . . , -> /3 u C u , - ^ I U P C M , • • •. - 17i |xP(M are
FDCA -proved formulae and the involved substitutions give rise to a disjoint covering of \\O, ||, that is the open goal
containing p(6.) is FQCA-refuted by P. Since this holds for 1 < t < r, the proof is concluded. I

Now we can prove our main theorem.

THEOREM A. 14 (Finite failure 1)
If for a program P which admits a deterministic splitting for Fax(P) and for an atom A, PU{i- -4}hasa finitely
failed SLD-ttee. then there is a proof II :: -<A in the Foe A -system applying only axioms from F a x (P) .

PROOF. By hypothesis there is a SL£>-trce*p (A | 0). By Lemma A. 13, we have a (disjoint) covering | |<7i/t | | , . . . ,
||CTty4|| of ||>4|| such that there is a proof IIj :: -<cr}A, for 1 < j < k. An application of the £>Cv4-instance
V(-I<TI>4 A . . . A -'a), A —¥ —'A) yields our proof. I

THEOREM A. 15 (Finite failure 2)
If for a left-linear program P and an atom A,Pu{*- A } has a finitely failed .SLD-tree, then there is a proof II :: ->A
in the FfjC-4- s v s t e m applying only axioms from Fax(P).

PROOF. Since P is left-linear, then we can build a regular splitting for Fax(P). I

REMARK A.16

There are cases where DC A is not needed. By Lemma A.8, this happens for Krom programs. Indeed in a Krom
program non-local selection is not possible. If the clauses of P do not contain local variables, DC A is not needed
in a weaker sense. In this case, by Corollary A.12, we have that if P U {«— A] has a finitely failed SLD-Uee, then
there are F-proofs IIi :: -<<7iA,... , n n :: -trnA such that | |<7i/t | | , . . . , | | fn>l| | is a covering of || A ||.

Regular Search Spaces and Constructive Negation 403

REMARK A.17

We have taken into account only definite programs and SLD-utcs. The treatment easily extends to normal programs
and SLDNF-trees, under the following hypotheses:
• Only atoms are selected in the intermediate nodes of a SLDNF-tite.

• A leaf is open if the selected literal is a non-failed atom or a negated atom.

• Instead of using the Foe/*-system, we use the PFOCA -system. Moreover, we extend Definition A.9 to sets of
literals in the obvious way (A is refuted by II :: -<A and ->A by II :: A).

In particular, we can apply the extension Lemma A. 13 to the SLDNF-xxec **(L | A\,... ,An,-<B\,... ,->Bm)
considered in the proof of Theorem 4.5. Indeed, left-linearity entails the existence of a regular partition. Note that,
in Theorems A. 10 and 4.5, left-linearity can be replaced by the existence of a deterministic splitting.

Received 3 January 1995

