
Electronic Appendix to
Advances in Property-Based Testing for αProlog

James Cheney1, Alberto Momigliano2, Matteo Pessina2

1 University of Edinburgh jcheney@inf.ed.ac.uk
2 Università degli Studi di Milano momigliano@di.unimi.it,

matteo.pessina3@studenti.unimi.it

Abstract. We list here some formal definitions and further experiments
omitted from the paper for reasons of space

1 Some formal definitions

The effect of a permutation π on a name:

id(a) = a

((a b) ◦ π)(c) =

b π(c) = a
a π(c) = b
π(c) π(c) /∈ {a, b}

The swapping operation ground terms:

π · 〈〉 = 〈〉 π · f(t) = f(π · t)
π · 〈t, u〉 = 〈π · t, π · u〉 π · a = π(a)
π · 〈a〉t = 〈π · a〉π · t

Constraint satisfaction:

θ |= >
θ |= t ≈ u ⇐⇒ θ(t) ≈ θ(u)

θ |= t # u ⇐⇒ θ(t) # θ(u)

θ |= C ∧ C ′ ⇐⇒ θ |= C and θ |= C ′

θ |= ∃X:τ. C ⇐⇒ for some t : τ , θ[X := t]3 |= C

θ |= Na:ν. C ⇐⇒ for some b # (θ, C), θ |= C[b/a]

A context Γ is a sequence of bindings between variables (or names) and types.

Γ ::= · | Γ,X:τ | Γ#a:ν

where we write name-bindings as Γ#a:ν, to remind us that a must be fresh for
other names and variables in Γ .

Term complementation:

not[[τ]] : τ → τ set

not[[τ]](t) = ∅ when τ ∈ {1, ν, 〈ν〉τ} or t is a variable

not[[τ1 × τ2]](t1, t2) = {(s1,) | s1 ∈ not[[τ1]](t1)} ∪ {(, s2) | ss ∈ not[[τ2]](t2)}
not[[δ]](f(t)) = {g() | g ∈ Σ, g : σ → δ, f 6= g} ∪ {f(s) | s ∈ not[[τ]](t)}

The correctness of the algorithm for term complementation can be stated
in the following constraint-conscious way, as required by the proof of the main
soudness theorem:

Lemma 1 (Term Exclusivity).
Let K be consistent, s ∈ not[[τ]](t), FV (u) ⊆ Γ and FV (s, t) ⊆ X. It is not

the case that both Γ ;K |= ∃X:τ . u ≈ t and Γ ;K |= ∃X:τ . u ≈ s.
Inequality and non-freshness:

neq [[τ]] : τ × τ → o

neq [[1]](t, u) = ⊥
neq [[τ1 × τ2]](t, u) = neq [[τ1]](π1(t), π1(u)) ∨ neq [[τ2]](π2(t), π2(u))

neq [[δ]](t, u) = neqδ(t, u)

neq [[〈ν〉τ]](t, u) = Na:ν. neq [[τ]](t@ a, u@ a)

neq [[ν]](t, u) = t # u

neqδ(t, u) :−
∨
{∃X,Y :τ. t ≈ f(X) ∧ u ≈ f(Y) ∧ neq [[τ]](X,Y)

| f : τ → δ ∈ Σ}
∨
∨
{∃X:τ, Y :τ ′. t ≈ f(X) ∧ u ≈ g(Y)

| f : τ → δ, g : τ ′ → δ ∈ Σ, f 6= g}

nfr [[ν, τ]] : ν × τ → o

nfr [[ν,1]](a, t) = ⊥
nfr [[ν, τ1 × τ2]](a, t) = nfr [[ν, τ1]](a, π1(t)) ∨ nfr [[ν, τ2]](a, π2(t))

nfr [[ν, δ]](a, t) = nfrν,δ(a, t)

nfr [[ν, 〈ν′〉τ]](a, t) = Nb:ν′. nfr [[τ]](a, t@ b)

nfr [[ν, ν]](a, b) = a ≈ b
nfr [[ν, ν′]](a, b) = ⊥ (ν 6= ν′)

nfrν,δ(a, t) :−
∨
{∃X:τ. t ≈ f(X) ∧ nfr [[ν, τ]](a,X) | f : τ → δ ∈ Σ}

2 Other experiments

Random testing has been present in Isabelle/HOL’s since [1] and has been re-
cently enriched with a notion of smart test generators to improve its success

rate w.r.t. conditional properties. Exhaustive and symbolic testing follow the
SmallCheck approach [3]. Notwithstanding all these improvements, QuickCheck
requires all code and specs to be executable in the underlying functional lan-
guage, while many of the specifications that we are interested in are best seen
as partial and not terminating.

While not terribly exciting, these benchmarks, proposed and measured in [2]
and taken from Isabelle List.thy theory are useful to set up a rough compari-
son with Isabelle’s QuickCheck. We show the checks in our logic programming
formulation, leaving to the reader the obvious meaning, noting only that we use
numerals as datatype.

D1: distinct([X|XS]) => distinct(XS).

D2: distinct(XS),remove1(X,XS,YS) => distinct(YS).

D3: distinct(XS),distinct(YS),zip(XS,YS,ZS) => distinct(ZS).

S1: sorted(XS),remove_dupls(XS,YS) => sorted(YS).

S2: sorted(XS),insert(X,XS,YS) => sorted(YS).

S3: sorted(XS),length(XS,N),less_equal(I,J),less(J,N),

nth(I,XS,X),nth(J,XS,Y) => less_equal(X,Y).

Table 2 shows the TESS run time up to a given size (25), that in our case we
interpret as depth-bound. We extrapolated from Table 2 in [2] the S (for smart
generator) rows. We omit the results for exhaustive and narrowing-based testing;
the point of their inclusion was to show how smart generation outperforms the
latter two over checks with hard-to-satisfy premises. Again, these measurements
are only suggestive, since QuickCheck’s result are taken with another hardware
(empty cells denote timeout after 1h as in [2]’s setup). Still, we are largely
superior, possibly due to smart generation trying to replicate in a functional
setting what logic programming naturally offers. Note however that tests in
Isabelle/QuickCheck are efficiently run by code generation at the ML level, while
our bounded solver is just a non-optimized logic programming interpreter – to
name one, it does not have yet first-argument indexing.

As usual in TESS, negation elimination tends to outperform NF , especially
when, as here, it does not require extensional quantification. NEs only marginally
improves on NE , because the negated predicates (distinct,sorted etc.) are
already quite simple.

References

1. S. Berghofer and T. Nipkow. Random testing in Isabelle/HOL. In SEFM, pages
230–239. IEEE Computer Society, 2004.

2. L. Bulwahn. Smart testing of functional programs in Isabelle. In N. Bjørner and
A. Voronkov, editors, LPAR, volume 7180 of Lecture Notes in Computer Science,
pages 153–167. Springer, 2012.

3. C. Runciman, M. Naylor, and F. Lindblad. Smallcheck and lazy SmallCheck: au-
tomatic exhaustive testing for small values. In A. Gill, editor, Haskell Workshop,
pages 37–48. ACM, 2008.

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

D1 S 0 0 0 0.2 0.7 3.8 22 135 862
NF 0 0 0 0 0 0 0 0 0 0.07 0.12 0.2 0.32 0.52 0.83 1.36 2.22
NE 0 0 0 0 0 0 0 0 0 0.06 0.11 0.18 0.3 0.49 1.8 1.3 2.1
NEs 0 0 0 0 0 0 0 0 0 0.06 0.11 0.18 0.3 0.4 0.6 1.0 1.7

D2 S 0 0 0.1 0.4 2.5 16 98 671
NF 0 0 0 0 0 0 0 0 0 0 0.07 0.19 0.32 0.51 0.83 1.36 2.23
NE 0 0 0 0 0 0 0 0 0 0.6 0.11 0.18 0.3 0.49 0.8 1.32 2.17
NEs 0 0 0 0 0 0 0 0 0 0.6 0.11 0.18 0.2 0.39 0.6 1.1 1.7

D3 S 4.3 157
NF 0 0 0 0.08 0.14 0.35 0.76 1 3 6 12 24 45 82 155 286 580
NE 0 0 0 0.08 0.13 0.32 0.68 1.3 3 6 11 22 42 79 150 280 586
NEs 0 0 0 0.08 0.13 0.22 0.5 0.9 2.1 4.5 8 17 3 63 121 225 448

S1 S 0 0 0 0 0 0 0 0 0.10 0.2 0.3 0.8 1.7 3.6 7.8 17 36
NF 0 0 0 0 0 0 0 0 0 0 0.6 0.08 0.11 0.15 0.21 0.27 0.35
NE 0 0 0 0 0 0 0 0 0 0 0.06 0.08 0.11 0.15 0.2 0.27 0.36
NEs 0 0 0 0 0 0 0 0 0 0 0 0.04 0.06 0.08 0.11 0.16 0.2

S2 S 0 0 0 0 0 0.1 0.1 0.2 0.5 1.1 2.5 5.5 12 28 61 135 292
NF 0 0 0 0 0 0 0 0 0 0 0 0.05 0.07 0.1 0.13 0.18 0.23
NE 0 0 0 0 0 0 0 0 0 0.06 0.08 0.11 0.15 0.19 0.25 0.33 0.44
NEs 0 0 0 0 0 0 0 0 0 0.02 0.04 0.04 0.06 0.08 0.11 0.16 0.2

S3 S 0 0 0 0 0.1 0.1 0.2 0.4 0.9 2.2 5.1 12 26 59 136 311 708
NF 0 0 0.05 0.08 0.13 0.2 0.32 0.48 0.73 1 1.5 2.2 3.2 4.5 6.4 8.9 12
NE 0 0 0 0.05 0.08 0.12 0.18 0.27 0.4 0.57 0.83 1.1 1.6 2.2 3.2 4.3 5.7
NEs 0 0 0 0 0 0 0.04 0.09 0.1 0.28 0.4 0.5 0.8 1.1 1.5 2.1 2.9

Table 1. TESS for list benchmark.

