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Abstract. We list here some formal definitions and further experiments
omitted from the paper for reasons of space

1 Some formal definitions

The effect of a permutation π on a name:

id(a) = a

((a b) ◦ π)(c) =

b π(c) = a
a π(c) = b
π(c) π(c) /∈ {a, b}

The swapping operation ground terms:

π · 〈〉 = 〈〉 π · f(t) = f(π · t)
π · 〈t, u〉 = 〈π · t, π · u〉 π · a = π(a)
π · 〈a〉t = 〈π · a〉π · t

Constraint satisfaction:

θ |= >
θ |= t ≈ u ⇐⇒ θ(t) ≈ θ(u)

θ |= t # u ⇐⇒ θ(t) # θ(u)

θ |= C ∧ C ′ ⇐⇒ θ |= C and θ |= C ′

θ |= ∃X:τ. C ⇐⇒ for some t : τ , θ[X := t]3 |= C

θ |= Na:ν. C ⇐⇒ for some b # (θ, C), θ |= C[b/a]

A context Γ is a sequence of bindings between variables (or names) and types.

Γ ::= · | Γ,X:τ | Γ#a:ν

where we write name-bindings as Γ#a:ν, to remind us that a must be fresh for
other names and variables in Γ .



Term complementation:

not[[τ ]] : τ → τ set

not[[τ ]](t) = ∅ when τ ∈ {1, ν, 〈ν〉τ} or t is a variable

not[[τ1 × τ2]](t1, t2) = {(s1, ) | s1 ∈ not[[τ1]](t1)} ∪ {( , s2) | ss ∈ not[[τ2]](t2)}
not[[δ]](f(t)) = {g( ) | g ∈ Σ, g : σ → δ, f 6= g} ∪ {f(s) | s ∈ not[[τ ]](t)}

The correctness of the algorithm for term complementation can be stated
in the following constraint-conscious way, as required by the proof of the main
soudness theorem:

Lemma 1 (Term Exclusivity).
Let K be consistent, s ∈ not[[τ ]](t), FV (u) ⊆ Γ and FV (s, t) ⊆ X. It is not

the case that both Γ ;K |= ∃X:τ . u ≈ t and Γ ;K |= ∃X:τ . u ≈ s.
Inequality and non-freshness:

neq [[τ ]] : τ × τ → o

neq [[1]](t, u) = ⊥
neq [[τ1 × τ2]](t, u) = neq [[τ1]](π1(t), π1(u)) ∨ neq [[τ2]](π2(t), π2(u))

neq [[δ]](t, u) = neqδ(t, u)

neq [[〈ν〉τ ]](t, u) = Na:ν. neq [[τ ]](t@ a, u@ a)

neq [[ν]](t, u) = t # u

neqδ(t, u) :−
∨
{∃X,Y :τ. t ≈ f(X) ∧ u ≈ f(Y ) ∧ neq [[τ ]](X,Y )

| f : τ → δ ∈ Σ}
∨
∨
{∃X:τ, Y :τ ′. t ≈ f(X) ∧ u ≈ g(Y )

| f : τ → δ, g : τ ′ → δ ∈ Σ, f 6= g}

nfr [[ν, τ ]] : ν × τ → o

nfr [[ν,1]](a, t) = ⊥
nfr [[ν, τ1 × τ2]](a, t) = nfr [[ν, τ1]](a, π1(t)) ∨ nfr [[ν, τ2]](a, π2(t))

nfr [[ν, δ]](a, t) = nfrν,δ(a, t)

nfr [[ν, 〈ν′〉τ ]](a, t) = Nb:ν′. nfr [[τ ]](a, t@ b)

nfr [[ν, ν]](a, b) = a ≈ b
nfr [[ν, ν′]](a, b) = ⊥ (ν 6= ν′)

nfrν,δ(a, t) :−
∨
{∃X:τ. t ≈ f(X) ∧ nfr [[ν, τ ]](a,X) | f : τ → δ ∈ Σ}

2 Other experiments

Random testing has been present in Isabelle/HOL’s since [1] and has been re-
cently enriched with a notion of smart test generators to improve its success



rate w.r.t. conditional properties. Exhaustive and symbolic testing follow the
SmallCheck approach [3]. Notwithstanding all these improvements, QuickCheck
requires all code and specs to be executable in the underlying functional lan-
guage, while many of the specifications that we are interested in are best seen
as partial and not terminating.

While not terribly exciting, these benchmarks, proposed and measured in [2]
and taken from Isabelle List.thy theory are useful to set up a rough compari-
son with Isabelle’s QuickCheck. We show the checks in our logic programming
formulation, leaving to the reader the obvious meaning, noting only that we use
numerals as datatype.

D1: distinct([X|XS]) => distinct(XS).

D2: distinct(XS),remove1(X,XS,YS) => distinct(YS).

D3: distinct(XS),distinct(YS),zip(XS,YS,ZS) => distinct(ZS).

S1: sorted(XS),remove_dupls(XS,YS) => sorted(YS).

S2: sorted(XS),insert(X,XS,YS) => sorted(YS).

S3: sorted(XS),length(XS,N),less_equal(I,J),less(J,N),

nth(I,XS,X),nth(J,XS,Y) => less_equal(X,Y).

Table 2 shows the TESS run time up to a given size (25), that in our case we
interpret as depth-bound. We extrapolated from Table 2 in [2] the S (for smart
generator) rows. We omit the results for exhaustive and narrowing-based testing;
the point of their inclusion was to show how smart generation outperforms the
latter two over checks with hard-to-satisfy premises. Again, these measurements
are only suggestive, since QuickCheck’s result are taken with another hardware
(empty cells denote timeout after 1h as in [2]’s setup). Still, we are largely
superior, possibly due to smart generation trying to replicate in a functional
setting what logic programming naturally offers. Note however that tests in
Isabelle/QuickCheck are efficiently run by code generation at the ML level, while
our bounded solver is just a non-optimized logic programming interpreter – to
name one, it does not have yet first-argument indexing.

As usual in TESS, negation elimination tends to outperform NF , especially
when, as here, it does not require extensional quantification. NEs only marginally
improves on NE , because the negated predicates (distinct,sorted etc.) are
already quite simple.
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9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

D1 S 0 0 0 0.2 0.7 3.8 22 135 862
NF 0 0 0 0 0 0 0 0 0 0.07 0.12 0.2 0.32 0.52 0.83 1.36 2.22
NE 0 0 0 0 0 0 0 0 0 0.06 0.11 0.18 0.3 0.49 1.8 1.3 2.1
NEs 0 0 0 0 0 0 0 0 0 0.06 0.11 0.18 0.3 0.4 0.6 1.0 1.7

D2 S 0 0 0.1 0.4 2.5 16 98 671
NF 0 0 0 0 0 0 0 0 0 0 0.07 0.19 0.32 0.51 0.83 1.36 2.23
NE 0 0 0 0 0 0 0 0 0 0.6 0.11 0.18 0.3 0.49 0.8 1.32 2.17
NEs 0 0 0 0 0 0 0 0 0 0.6 0.11 0.18 0.2 0.39 0.6 1.1 1.7

D3 S 4.3 157
NF 0 0 0 0.08 0.14 0.35 0.76 1 3 6 12 24 45 82 155 286 580
NE 0 0 0 0.08 0.13 0.32 0.68 1.3 3 6 11 22 42 79 150 280 586
NEs 0 0 0 0.08 0.13 0.22 0.5 0.9 2.1 4.5 8 17 3 63 121 225 448

S1 S 0 0 0 0 0 0 0 0 0.10 0.2 0.3 0.8 1.7 3.6 7.8 17 36
NF 0 0 0 0 0 0 0 0 0 0 0.6 0.08 0.11 0.15 0.21 0.27 0.35
NE 0 0 0 0 0 0 0 0 0 0 0.06 0.08 0.11 0.15 0.2 0.27 0.36
NEs 0 0 0 0 0 0 0 0 0 0 0 0.04 0.06 0.08 0.11 0.16 0.2

S2 S 0 0 0 0 0 0.1 0.1 0.2 0.5 1.1 2.5 5.5 12 28 61 135 292
NF 0 0 0 0 0 0 0 0 0 0 0 0.05 0.07 0.1 0.13 0.18 0.23
NE 0 0 0 0 0 0 0 0 0 0.06 0.08 0.11 0.15 0.19 0.25 0.33 0.44
NEs 0 0 0 0 0 0 0 0 0 0.02 0.04 0.04 0.06 0.08 0.11 0.16 0.2

S3 S 0 0 0 0 0.1 0.1 0.2 0.4 0.9 2.2 5.1 12 26 59 136 311 708
NF 0 0 0.05 0.08 0.13 0.2 0.32 0.48 0.73 1 1.5 2.2 3.2 4.5 6.4 8.9 12
NE 0 0 0 0.05 0.08 0.12 0.18 0.27 0.4 0.57 0.83 1.1 1.6 2.2 3.2 4.3 5.7
NEs 0 0 0 0 0 0 0.04 0.09 0.1 0.28 0.4 0.5 0.8 1.1 1.5 2.1 2.9

Table 1. TESS for list benchmark.


