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Introduction

Background and motivation

• Logical frameworks: (mechanized) meta-logics for representing,
reasoning and programming (over) formal systems.

• Our focus: Specifying formal systems using higher-order abstract
syntax (HOAS):

• binders in the object language ⇐⇒ binders in meta-language.

• The 3 tenets of HOAS:
• α-renaming for free
• substitution as β reduction
• contexts are implicitly handled via hypothetical parametric judgments

• The first two items are well understood, the third one somewhat less

This talk: let’s revisit reasoning with assumptions/open objects
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More background and motivation

• Hypothetical judgments are well known and non controversial as far
as representation is concerned since the late 80’s (λProlog, Elf,
Isabelle Pure)

• Less consensus on the reasoning side, different approaches along the
Type/Proof Theory divide (and among TT as well. . . )

Type-theorists Proof-theorists

Twelf, Beluga, Delfin. . . Abella, Tac, Hybrid . . .

• An analogy: In the beginning, Gentzen created natural deduction, but
then he switched to the sequent calculus in order to sort out the
meta-theory.
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An Homage to ProofCert

• We all want to relate one framework to another with the aim to
transfer theorems and proofs.

• There is ongoing work on relating TT and PT logical frameworks,
mainly Minneapolis-based:

- LF to λProlog
- Twelf to M2 (only closed terms, so Twelf 1.2)

• . . . but issue of transferring reasoning in presence of assumptions is
still unaddressed, e.g.

* What is the logical status of Twelf’s regular world assumption?
* How do you map Beluga’s contextual objects to a logic such as G or

Coq?
* . . .
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The rest of the talk

• Motivating examples

• Notation for contexts - not just a matter of style.

• Contexts as structured sequences
• Generalized contexts
• Context relations

• Some very preliminary remarks about:
• A unifying view of generalized context and ctx relation via the lattice of

context assumptions;
• the design of ORBI (Open challenge problem Repository for systems

supporting reasoning with BInders), an intermediate language for
specifying benchmarks problems.
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A first example: the polymorphic lambda-calculus

Grammar: Types and Terms - does not enforce scope

Types T ::= α Terms M ::= x
| arrT1 T2 | lam x :T .M | app M N
| all α.T | tlam α.M | tapp M T

Alternative : Well-formed terms Martin-Löf-style - enforces scope

x term
tmv

...
M term

(lam x .M) term
tmx,tmv

l

α tp
tpv

...
M term

(tlamα.M) term
tmα,tpv

tl

M1 term M2 term

(app M1 M2) term
tma

M term A tp

(tapp M A) term
tmta
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More examples in context-free representation

Another example: some rules for “algorithmic” equality (the copy clause)

x term
x

aeq x x aev

...
aeq M N

aeq (lam x .M) (lam x .N)
aex ,aevl

aeq M1 N1 aeq M2 N2

aeq (app M1 M2) (app N1 N2)
aea

+ Context-free representation scales from grammars to judgments

- 2-dimensional notation is ambiguous

- Can we tell open vs. closed object?

- What about structural properties of assumptions? Shouldn’t they be
explicit?
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Putting things into context

What is a context?

• Typical answer [From Gentzen on]: A sequence – OK, sometimes a
(multi)set – of formulas A1, A2, . . . ,An.

Examples of contexts occurring in the above examples:

Type Context Γ ::= · | Γ, α tp
Term/Type Context Γ ::= · | Γ, α tp | Γ, x term
Eq. Context Γ ::= · | Γ, x term, aeq x x We are introducing the variable

x together with the assumption
aeq x x

Issue: The use of ’,’ is ambiguous.

Our view: Contexts are structured sequences - distinguish between
“blocks” and ctx using ’;’ and ’,’

This was already adopted in Twelf 1.3 with the notion of regular world
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Contexts as structured sequences

• A context is a sequence of declarations D where a declaration is a
block of individual atomic assumptions separated by ’;’, which binds
tighter than ’,’.

Atom A
Block of declaration D ::= A | D;A
Context Γ ::= · | Γ,D
Schema S ::= Ds | Ds |||| S

• A schema classify a context, where ’|’ describes alternatives

Sαx ::= α tp |||| x term
Sxaeq ::= x term; aeq x x

• There are some obvious typing rules relating context and schemas,
not shown here.

• Convention: Φαx describes a context with schema Sαx .
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Polymorphic lambda-calculus - revisited (with explicit
context)

Well-formed Terms

x term ∈ Φαx

Φαx ` x term
tmv

Φαx , x term ` M term

Φαx ` lam x .M term
tml

Φαx ` M1 term Φαx ` M2 term

Φαx ` (app M1 M2) term
tma

Φαx , α tp ` M term

Φαx ` tlamα.M term
tmtl

Φαx ` M term Φαx ` A tp

Φαx ` (tapp M A) term
tmta
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Structural rules

• More fine-grained view of structural rules, which can be applied inside
a block or to a whole ctx;

• Slightly unusual presentation of rules based on

operations on declarations:

• Let rmA : S → S ′ be a total function taking D ∈ S and returning
D ′ ∈ S ′ where D ′ is D with A removed, if A ∈ D; otherwise D ′ = D.

• Let permπ : S → S ′ be a total function which permutes the elements
of D ∈ S according to π to obtain D ′ ∈ S ′.

• Note that we also “remove” whole declarations (rmD).

• This approach will hopefully pay off soon enough. . .
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Structural properties of declarations

• Declaration Weakening:

Γ, rmA(D), Γ′ ` J

Γ,D, Γ′ ` J
d-wk

• Declaration Strengthening:

Γ,D, Γ′ ` J

Γ, rmA(D), Γ′ ` J
d-str(†)

with the proviso (†) that A is irrelevant to J (read subordination)

• Declaration Exchange

Γ,D, Γ′ ` J

Γ, permπ(D), Γ′ ` J
d-exc
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Structural properties of contexts

We canonically extended those operations to act on contexts (rm∗A,
perm∗π):

• Context weakening
rm∗A(Γ) ` J

Γ ` J
c-wk

• Context strengthening

Γ ` J
rm∗A(Γ) ` J

c-str(†)

• Context exchange
Γ ` J

perm∗π(Γ) ` J
c-exc
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Examples - revisited

Let’s look back at the rule for well formed type application

Φαx ` M term ?? ` A tp

Φαx ` (tapp M A) term
tmta

where Φαx := · | Φαx , x term | Φαx , α tp

In what context is A a well-formed type?

1. A is a type in Φαx , i.e., via implicit weakening: we use one joint
context

2. A is a type in rm∗x term(Φαx): smallest context necessary, explicit
strengthening.

Why do we care?
It’s the meta-theory, stupid!
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Reasoning in contexts

Attempt (Admissibility of Reflexivity)

For every term M, ??? ` aeq M M.

The proof should be by induction on M. . .

Two possible approaches to fill that ???

1. Generalized context approach (G). The context used in the theorem
contains all assumptions in the relevant judgments.
Think Twelf/Beluga

2. Context relations approach (R). State how the different relevant
contexts are related (using rm∗) and then state the theorem under the
condition that the relation holds.
Think Abella/Hybrid

Alberto Momigliano Toward a Theory of Contexts of Assumptions in Logical Frameworks 15 / 24
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Generalized context : Reflexivity proof

• Here the generalized context has schema x term; aeq x x , so it’s just
Φxaeq, but in general contains all the relevant assumptions from the
contributing contexts.

Theorem

If Φxaeq ` M term then Φxaeq ` aeq M M.

Proof.

rec ref : {φ:xaeqC}{M:[φ. term]} [φ. aeq (M ...) (M ...)] =
mlam φ ⇒ mlam M ⇒ case [φ. M ...] of
| [φ. #p.1 ...] ⇒ [φ. #p.2 ...] % Variable

| [φ. lam λx. M ... x] ⇒ % Lambda
let [φ,b:block y:term, ae_v:aeq y y. D ... b.1 b.2]=

ref [φ, b:block y:term, ae_v:aeq y y] [φ, b. M ... b.1]
in [φ. ae_l λx. λw. (D ... x w)]

| [φ. app (M1 ...) (M2 ...)] ⇒ % Application
let [φ. D1 ...] = ref [φ] [φ . M1 ... ] in
let [φ. D2 ...] = ref [φ] [φ . M2 ...] in [φ. ae_a (D1 ...) (D2 ...)];
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Context relations: Reflexivity

• Note that Φx = rm∗aeq x x(Φxaeq). We can define the graph of this
function inductively:

. ∼ . crele
Φx ∼ Φxaeq

Φx , x term ∼ Φxaeq, x term; aeq x x
crelxaeq

Theorem

Assume Φx ∼ Φxaeq. If Φx ` M term then Φxaeq ` aeq M M.

• In Abella (and Hybrid, give or take), the relations and the statement
of the thm look like that:

Define xaeqR : olist → olist → prop by
xaeqR nil nil;

nabla x, xaeqR (term x :: Ts) (aeq x x :: As) := xaeqR Ts As.

Theorem reflR: forall Ts As M, xaeqR Ts As →
{Ts |- term M} → {As |- aeq M M}.
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G-Promotion

We extend the previous example (algorithmic equality of terms) by
considering declarative equality (which adds rules for reflexivity, symmetry,
and transitivity), and prove them equivalent.

Φxaeq := · | Φxaeq, x term; aeq x x (as seen before)
Φxdeq := · | Φxdeq, x term; deq x x
Φxda := · | Φxda, x term; deq x x ; aeq x x

Recall the statement of reflexivity for terms:

If Φxaeq ` M term then Φxaeq ` aeq M M.

This lemma (and others) are needed in the proof of equivalence, but we must
“promote” it first to the larger context Φxda.

If Φxda ` M term then Φxda ` aeq M M.
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Proving Promotion

Lemma

If Φxda ` M term then Φxda ` aeq M M.

Proof.

Φxda ` M term by assumption
Φxaeq ` M term by c-str
Φxaeq ` aeq M M by previous lemma
Φxda ` aeq M M by c-wk

• In general, proofs of promotion for G versions of theorems require a
combination of strengthening and weakening on contexts.

• R versions of promotion involve strengthening and weakening of one
or both sides of a context relation.

• Wouldn’t it be nice to have your logical framework support this?
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The semi-lattice of declarations

• Consider the set D of well-formed declarations and quotient it under
the perm operation;

• Define D1 � D2 iff there is D s.t. D1 = rmD(D2), modulo perm,
which will ignore from now on.

• Define D1 ∨ D2 as remove dup(D1;D2). Hence, “consing” (and
cleaning up) two declarations yields their least upper bound.

• 〈D,�, ε,
∨
〉 is an upper semi-lattice with the empty declaration ε as

zero element.

• Extend this construction to the set of schemas1 and of well-formed
ctx.

the generalized context in the G-version of thms can be seen
as the lub of the relevant ctx, e.g.

Φxda = Φxaeq ∨ Φxdeq

1Warning: we haven’t worked out the details for alternatives yet.
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The lattice 2

• A picture: see white board

• Phrasing weak/stren as “casting” – remember the promotion lemma:

rm∗D(Γ) ` J

Γ ` J
c-wk

;

Γ′ ` J Γ′ �c Γ
Γ ` J

upc

Γ ` J
rm∗D(Γ) ` J

c-str†
;

Γ′ ` J Γ �c Γ′

Γ ` J
doc

• What about ctx relations? The intuition is that we can recover the
certain ctx relations by navigating the Hasse diagram.

• We conjecture that if you give us the G version of a thm involving a
ctx Φ, we can recover the R version by relating the ctxs of which Φ is
the lub.

Given Φxda = Φxaeq ∨ Φxdeq, build Φxaeq ∼ Φxdeq
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ORBI

• We are designing Open challenge problem Repository for systems
supporting reasoning with BInders, for sharing HOAS benchmark
problems – Think an intermediate language between OTT and TPTP

• Uses a Beluga-like syntax enriched with directives so that the ORBI2X

tools will compile it into legal Twelf/Beluga, Abella/Hybrid etc.

%Syntax
tm: type. app: tm → tm → tm. lam: (tm → tm) → tm.

%Judgments
aeq: tm → tm → type.

%Rules
ae_l: ({x:tm} aeq x x → aeq (M x) (N x)) → aeq (lam (λx. M x)) (lam (λx. N x))

.

%Schemas
schema xaeqG: block (x:tm; u:aeq x x).
schema xaeqR: block (x:tm) ~ block (x:tm; u:aeq x x).

%Theorems
theorem reflG : forall (Phi : xaeqG) (M : tm), [Phi |- aeq M M].
%PT explicit (M : tm) in reflG.
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Conclusions and future work

What started as a comparison work between HOAS systems is bearing
additional fruits:

• A re-appraisal of the role of ctx in Proof Theory – in other terms a
percolation of Beluga’s type theory into PT, hopefully not scaring
people away;

• The basis of a possible unification of how ctx are mechanized in TT
and PT tools

• The design of an intermediate language for benchmark sharing

Current and future work:

• Carry out the G-to-R translation

• Work out the machinery to automate promotion lemmas

Alberto Momigliano Toward a Theory of Contexts of Assumptions in Logical Frameworks 23 / 24



Introduction

The end

Thank you!

http://complogic.cs.mcgill.ca/beluga/benchmarks/
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