A Practical Approach to Co-induction in Twelf

Alberto Momigliano
Laboratory for Foundations of Computer Science
University of Edinburgh &
DSI, University of Milan

Funded in part by EU-project Mobius (IST-2005-015905)
TYPES 2006, Nottingham, April 18-21, 2006
Motivation

- Common complaint (see the POPLmark challenge): *Twelf* is a great system but it cannot do “⟨insert your favorite theorem prover feature⟩”, so we’ll suffer thru a first-order encoding to utilize systems where that feature is native).

- We’ll show a way to do proofs by co-induction in Twelf here and now.

- The basic idea (dating back to Milner’s original CCS [1980]): define, when possible, your co-inductive relation *inductively*, by mimicking the construction of *gfix* by ordinal powers up to ω (see also Miller et al 1997).

- No change to the Twelf’s meta-theory, hence the *totality* checker is available and can certify relational type families as proofs.

- No free lunch: It’s a bit awkward and better seen as an incentive to develop the appropriate meta-theory. Still, all proofs in Milner [1980] are inductive.
Technical background

- Recall the set-theoretic characterization of a (co)inductive definition. Let f be a monotone endo-function on a complete lattice P:

 $$lfix(f) = \bigwedge\{x \mid f(x) \leq x\}.$$
 Dually, $gfix(f) = \bigvee\{x \mid x \leq f(x)\}$

- Fix a universe \mathcal{U}. Its powerset is a complete lattice. A rule set [Aczel 77] is any set $\mathcal{R} \subseteq \mathcal{U} \times 2^{\mathcal{U}}$ (here denumerable); let $\Phi_{\mathcal{R}} : 2^{\mathcal{U}} \to 2^{\mathcal{U}}$ and define

 $$\Phi_{\mathcal{R}}(A) = \{a \in \mathcal{U} \mid (a, G) \in \mathcal{R}, G \subseteq A\}$$

- The set co-inductively defined by \mathcal{R} over \mathcal{U} is $gfix(\Phi_{\mathcal{R}})$, namely $CId(\mathcal{R}) = \bigvee\{A \mid A \subseteq \Phi_{\mathcal{R}}(A)\}$. As a proof-rule:

 $$\frac{\exists A \cdot a \in A \quad A \subseteq \Phi_{\mathcal{R}}(A)}{a \in CId(\mathcal{R})} CI$$
The trick

- Recall the notion of *ordinal power* $f^\uparrow \downarrow \alpha$ of a function f on a complete lattice. From Tarski’s theorem, if f is monotone, by repeated application to the empty set, it will converge to the set inductively defined by the rule set; if it is continuous, it will converge in at most ω steps. Note that Φ_R is continuous.

- What about the dual? Can we characterize $gfix$ via iteration of the operator to the universe of discourse? Yes, provided it satisfies co-continuity (preservation of meets): $f(\bigvee X) = \bigvee (fX)$ for every directed $X \subseteq \mathcal{U}$.

 \[
 \begin{align*}
 f \downarrow 0 &= \mathcal{U} \\
 f \downarrow n+1 &= \Phi_R(f \downarrow n) \\
 f \downarrow \omega &= \bigcap \{f \downarrow k \mid k \in \omega\} = gfix(\Phi_R)
 \end{align*}
 \]

- In practical terms, we are looking for decidable conditions on the “shape” of the rule set, so that co-continuity holds. One such example is “finite branching”, as we will see.
First example: divergence in the untyped λ-calculus

\[
\begin{align*}
\frac{\uparrow e_1}{\downarrow (e_1 e_2)} & \quad \text{div} - \text{app1} \\
\frac{e_1 \downarrow \lambda x. e}{\uparrow (e_1 e_2)} & \quad \text{div} - \text{app2}
\end{align*}
\]

- In words: a lambda never diverges. An application diverges if e_1 diverges; otherwise it converges to a lambda, its application to e_2 diverges.

- The lfix is empty, yet the gfix of this rules encode divergence. However, it can be shown (trust me, it follows from determinism of evaluation) that the associated operator is co-continuous, so the set can be also computed inductively.

- So, let’s write some Twelf code. First declarations for expressions and lazy evaluation. I assume familiarity with Twelf’s idea of encoding theorems as relations between type families that need to be verified as total functions.
Evaluation in the lazy λ-calculus

exp : type.
lam : (exp -> exp) -> exp. %%% Note HOAS here
app : exp -> exp -> exp.

%block L1 : block {x:exp}. %%% Ignore this for now
%worlds (L1) (exp).

eval : exp -> exp -> type.
%mode +{E:exp} -{V:exp} eval E V.

ev_lam : eval (lam E) (lam E).

ev_app : eval (app E1 E2) V
<- eval E1 (lam E)
<- eval (E E2) V. %% subst as meta-level application
Divergence in the untyped λ-calculus: inductive encoding

%% fixed point indexes
index : type.

zz : index.
ss : index -> index.

%% divergence has additional argument 'index'
ndiverge : index -> exp -> type.
%mode ndiverge +N +E.

divbase : ndiverge zz E.

div_app1 : ndiverge (ss N) (app E1 E2)
<- ndiverge N E1.

div_app2 : ndiverge (ss N) (app E1 E2)
<- eval E1 (lam E)
<- ndiverge N (E E2).
Adequacy, I

• Finally, say that $\text{diverge } e$ iff $\forall n : \text{index. ndiverge } n \ e$

• Adequacy: one direction, induction on “n”, using only the fix point property of divergence. Hence encode the latter and prove it entails the inductive version:

$$\text{div} : \text{exp} \rightarrow \text{type.}$$

$$\text{dv_app1} : \text{div} (\text{app } E_1 E_2)$$
$$\quad \leftarrow \text{div } E_1 .$$

$$\text{dv_app2} : \text{div} (\text{app } E_1 E_2)$$
$$\quad \leftarrow \text{eval } E_1 (\text{lam } E_1')$$
$$\quad \leftarrow \text{div } (E_1' E_2) .$$

$$\text{dvdiv} : \{N: \text{index}\} \text{ div } E \rightarrow \text{ndiverge } N \ E \rightarrow \text{type.}$$

$$\text{d0} : \text{dvdiv } \text{zz } _ _ \text{divbase.}$$

$$\text{d1} : \text{dvdiv } (\text{ss } N) (\text{dv_app1 } D) (\text{dv_app1 } DN)$$
$$\quad \leftarrow \text{dvdiv } N \ D \ DN .$$

$$\text{d2} : \text{dvdiv } (\text{ss } N) (\text{dv_app2 } D VV) (\text{dv_app2 } DN VV)$$
$$\quad \leftarrow \text{dvdiv } N \ D \ DN .$$

%total N (dvdiv N P Q).
Adequacy, II

- Other way is meta-theoretical: need to apply CI rule, i.e. to show that \(ndiverge \) is a “simulation”. This follows from definitions and from the fact that the (big-step) evaluation is determinate (a fortiori, finitely branching).

- CAVEAT: co-induction is defined via universal quantification. It \textbf{cannot} be queried existentially as a standard logic program. The preservation of the invariant must be checked at \textbf{every} stage of the fixed point construction.

- To show, e.g. \(diverge \omega \) we need to prove, by induction, \(ndiverge n \omega \), for all \(n \).
Proving Ω diverges

- Theorem: the Ω combinator diverge. The standard formal proof (in Hybrid) requires to guess the right simulation, which is in this case $\{\omega\}$ and afterward a 10 commands script. In Coq you can use the CoFix tactics and guarded induction, but of course it clashes with HOAS and the overall soundness of the latter still an issue.

- You write the theorem as relation in Twelf, where the first 2 cases would not occur in an co-inductive proof:

 $\omega = \text{app} (\text{lam} [x] (\text{app} x x)) (\text{lam} [x] (\text{app} x x))$.

 $\text{ndiverge} I \omega \rightarrow \text{type}$.

 $\text{divomegaR}: \{I : \text{index}\}$

 $\text{dub : ndivomegaR zz divbase}$.

 $\text{dd : ndivomegaR (ss zz) (div_app1 divbase)}$.

 $\text{dus : ndivomegaR (ss I) (div_app2 D1 (ev_lam))}$

 $\leftarrow \text{ndivomegaR I D1}$.
Proving Ω diverges, cont’ed

• ... and have it checked for totality:

```twelf
%mode +{I:index} -{Q:diverge I omega} (divomegaR I Q).
%worlds () (divomegaR _ _).
%total I (divomegaR I P).
```

• Luckily, Carsten’s meta-theorem prover will also find the realizer for you:

```twelf
%theorem div_omega: forall {N:index} exists {Pi : ndiverge N omega} true.
%prove 3 N (div_omega N _).
```

%%% Twelf’s answer:
%theorem div_omega : {N:index} diverge N omega -> type.
%prove 3 N (div_omega N _).
%mode +{N:index} -{Pi:diverge N omega} (div_omega N Pi).
%QED
%skolem div_omega#1 : {N:index} diverge N omega.
```
Applicative simulation (Ong-Abramski)

- The largest relation defined by:

\[
\forall e'. e \downarrow \lambda x. e' \rightarrow \exists f': f \downarrow \lambda x. f' \land \forall m. e'[m/x] \leq f'[m/x] \quad \text{sim} \\
\]

- Let’s play the same trick: \( e \leq f \) implies \( \forall n : \text{index}. \ sim n e f \). Conversely, \( sim n e f \) is indeed a simulation.

- Note that, by the reduced syntax of LF (no existentials), we have to split the judgment into two mutual recursive ones, so that \( F' \) is correctly quantified.

- However, the use of hypothetical judgments obliterates the difference between simulation and its open extension [Lassen 99], which saves us some serious pain while formalising the proofs.
Applicative simulation: Twelf encoding

\[ \text{sim} : \text{index} \to \text{exp} \to \text{exp} \to \text{type} \]
\%mode \text{sim} +N +E +F.

\[ \text{simbody} : \text{index} \to (\text{exp} \to \text{exp}) \to \text{exp} \to \text{type} \]
\%mode \text{simbody} +N +E +F.

\[ \text{sim\_all} : \text{sim} \; \text{zz} \; \text{E} \; \text{F}. \quad \%\% \text{everything goes at step 0} \]

\[ \text{simf} : \text{sim} \; (\text{ss} \; \text{I}) \; \text{E} \; \text{F} \]
\[ \quad \leftarrow (\{\text{E}':\text{exp} \to \text{exp}\} \; \text{eval} \; \text{E} \; (\text{lam} \; \text{E}') \]
\[ \quad \quad \rightarrow \text{simbody} \; \text{I} \; \text{E}' \; \text{F}). \]

\[ \text{sb} : \text{simbody} \; \text{I} \; \text{E}' \; \text{F} \]
\[ \quad \leftarrow \text{eval} \; \text{F} \; (\text{lam} \; \text{F}') \]
\[ \quad \leftarrow (\{\text{m}:\text{exp}\} \; \text{sim} \; \text{I} \; (\text{E}' \; \text{m}) \; (\text{F}' \; \text{m})). \]
A tiny bit of meta-theory: reflexivity of simulation

% Reflexitivity of simulation

nsimrefl: \{N : index\} \{E : exp\} sim N E E -> type.

nsimr_z : nsimrefl zz _ sim_all.
nsimr_s : nsimrefl (ss N) _
    (simf ([e:exp -> exp][u : eval E1 (lam e)]
        sb ([x:exp] NS e u x) u))
    <- ([e:exp -> exp] {u : eval E1 (lam e)} {x:exp}
        nsimrefl N _ (NS e u x)).

%mode nsimrefl +I +E -D.
%block L2 : some \{E:exp\} block \{e:exp -> exp\}{u:eval E (lam e)} \{x:exp\}
%worlds (L1 | L2) (exp).
%worlds (L2) (nsimrefl _ _ _).
%total M (nsimrefl M _ _).
Conclusion: what have we learned?

- What I’ve presented today is little more than a patch.

- However, it shows that with a very little thought you do not need to rubbish a system such as Twelf for lacking a feature you may deem fundamental.

- It may be interesting to play out some more extensive examples (Howe’s proof) to see the limitations of this approach.

- At the same time, I think that there is mounting evidence that co-induction should be a first class citizen in Twelf-land.

- This may entail quite a different approach to totality checking, as the obvious fix, guarded induction, does not seem compatible with Twelf’s current operational semantics.