
A Practical Approach to Co-induction in Twelf

Alberto Momigliano

Laboratory for Foundations of Computer Science

University of Edinburgh &

DSI, University of Milan

Funded in part by EU-project Mobius (IST-2005-015905)

TYPES 2006, Nottingham, April 18-21, 2006

Motivation

• Common complaint (see the POPLmark challenge): Twelf is a great system
but it cannot do “〈insert your favorite theorem prover feature〉”, so we’ll suffer
thru a first-order encoding to utilize systems where that feature is native).

• We’ll show a way to do proofs by co-induction in Twelf here and now.

• The basic idea (dating back to Milner’s original CCS [1980]): define, when
possible, your co-inductive relation inductively, by mimicking the construction
of g f ix by ordinal powers up to ω (see also Miller et al 1997).

• No change to the Twelf’s meta-theory, hence the totality checker is available
and can certify relational type families as proofs.

• No free lunch: It’s a bit awkward and better seen as an incentive to develop
the appropriate meta-theory. Still, all proofs in Milner [1980] are inductive.

1

Technical background

• Recall the set-theoretic characterization of a (co)inductive definition. Let f be
a monotone endo-function on a complete lattice P:

• Then l f ix(f) =
V
{x | f (x)≤ x}. Dually, g f ix(f) =

W
{x | x ≤ f (x)}

• Fix a universe U. Its powerset is a complete lattice. A rule set [Aczel 77] is
any set R ⊂ U×2U (here denumerable); let ΦR : 2U → 2U and define

ΦR (A) = {a ∈ U | 〈a,G〉 ∈ R ,G ⊆ A}

• The set co-inductively defined by R over U is g f ix(ΦR), namely
CId(R) =

W
{A | A ⊆ ΦR (A)}. As a proof-rule:

∃A .a ∈ A A ⊆ ΦR (A)
CI

a ∈CId(R)
2

The trick

• Recall the notion of ordinal power f ↑↓α of a function f on a complete lat-
tice. From Tarski’s theorem, if f is monotone, by repeated application to the
empty set, it will converge to the set inductively defined by the rule set; if it is
continuous, it will converge in at most ω steps. Note that ΦR is continuous.

• What about the dual? Can we characterize gfix via iteration of the operator to
the universe of discourse? Yes, provided it satisfies co-continuity (preservation
of meets): f (

W
X) =

W
(f X) for every directed X ⊆ U.

f ↓ 0 = U
f ↓ n+1 = ΦR (f ↓ n)

f ↓ ω = ∩{ f ↓ k | k ∈ ω} = g f ix(ΦR)

• In practical terms, we are looking for decidable conditions on the “shape” of the
rule set, so that co-continuity holds. One such example is “finite branching”,
as we will see.

3

First example: divergence in the untyped λ-calculus

⇑ e1 div−app1
⇑ (e1 e2)

e1 ⇓ λx. e ⇑ e[e2/x]
div−app2

⇑ (e1 e2)

• In words: a lambda never diverges. An application diverges if e1 diverges;
otherwise it it converges to a lambda, its application to e2 diverges.

• The lfix is empty, yet the gfix of this rules encode divergence. However, it can
be shown (trust me, it follows from determinism of evaluation) that the associ-
ated operator is co-continuous, so the set can be also computed inductively.

• So, let’s write some Twelf code. First declarations for expressions and lazy
evaluation. I assume familiarity with Twelf’s idea of encoding theorems as
relations between type families that need to be verified as total functions.

4

Evaluation in the lazy λ-calculus

exp : type.

lam : (exp -> exp) -> exp. %%% Note HOAS here

app : exp -> exp -> exp.

%block L1 : block {x:exp}. %%% Ignore this for now

%worlds (L1) (exp).

eval : exp -> exp -> type.

%mode +{E:exp} -{V:exp} eval E V.

ev_lam : eval (lam E) (lam E).

ev_app : eval (app E1 E2) V

<- eval E1 (lam E)

<- eval (E E2) V. %% subst as meta-level application

5

Divergence in the untyped λ-calculus: inductive encoding

%% fixed point indexes
index : type.

zz : index.
ss : index -> index.

%%% divergence has additional argument ’index’
ndiverge : index -> exp -> type.
%mode ndiverge +N +E.

divbase : ndiverge zz E.

div_app1 : ndiverge (ss N) (app E1 E2)
<- ndiverge N E1.

div_app2 : ndiverge (ss N) (app E1 E2)
<- eval E1 (lam E)
<- ndiverge N (E E2).

6

Adequacy, I

• Finally, say that diverge e iff ∀n : index. ndiverge n e

• Adequacy: one direction, induction on “n”, using only the fix point property of
divergence. Hence encode the latter and prove it entails the inductive version:

div : exp -> type.

dv_app1 : div (app E1 E2)
<- div E1 .

dv_app2 : div (app E1 E2)
<- eval E1 (lam E1’)
<- div (E1’ E2) .

dvdiv : {N:index} div E -> ndiverge N E -> type.

d0 : dvdiv zz _ divbase.
d1 : dvdiv (ss N) (dv_app1 D) (div_app1 DN)

<- dvdiv N D DN.
d2 : dvdiv (ss N) (dv_app2 D VV) (div_app2 DN VV)

<- dvdiv N D DN.
%total N (dvdiv N P Q).

7

Adequacy, II

• Other way is meta-theoretical: need to apply CI rule, i.e. to show that

ndiverge is a “simulation”. This follows from definitions and from the fact

that the (big-step) evaluation is determinate (a fortiori, finitely branching).

• CAVEAT: co-induction is defined via universal quantification. It cannot be

queried existentially as a standard logic program. The preservation of the

invariant must be checked at every stage of the fixed point construction.

• To show, e.g. diverge omega we need to prove, by induction, ndiverge n

omega, for all n.

8

Proving Ω diverges

• Theorem: the Ω combinator diverge. The standard formal proof (in Hybrid)

requires to guess the right simulation, which is in this case {omega} and af-

terward a 10 commands script. In Coq you can use the CoFix tactics and

guarded induction, but of course it clashes with HOAS and the overall sound-

ness of the latter still an issue.

• You write the theorem as relation in Twelf, where the first 2 cases would not
occur in an co-inductive proof:

omega = app (lam [x] (app x x)) (lam [x] (app x x)).

divomegaR: {I : index} ndiverge I omega -> type.

dub : ndivomegaR zz divbase.
dd : ndivomegaR (ss zz) (div_app1 divbase).
dus : ndivomegaR (ss I) (div_app2 D1 (ev_lam))

<- ndivomegaR I D1.

9

Proving Ω diverges, cont’ed

• . . . and have it checked for totality:

%mode +{I:index} -{Q:diverge I omega} (divomegaR I Q).
%worlds () (divomegaR _ _).
%total I (divomegaR I P).

• Luckily, Carsten’s meta-theorem prover will also find the realizer for you:

%theorem div_omega: forall {N:index}
exists {Pi : ndiverge N omega} true.

%prove 3 N (div_omega N _).

%%%%% Twelf’s answer:
%theorem div_omega : {N:index} diverge N omega -> type.
%prove 3 N (div_omega N _).
%mode +{N:index} -{Pi:diverge N omega} (div_omega N Pi).
%QED
%skolem div_omega#1 : {N:index} diverge N omega.

10

Applicative simulation (Ong-Abramski)

• The largest relation defined by:

∀e′. e ⇓ λx. e′→∃ f ′ : f ⇓ λx. f ′∧ ∀m. e′[m/x]≤ f ′[m/x]
sim

e ≤ f

• Let’s play the same trick: e ≤ f implies ∀n : index. sim n e f . Conversely,
sim n e f is indeed a simulation.

• Note that, by the reduced syntax of LF (no existentials), we have to split the
judgment into two mutual recursive ones, so that F ′ is correctly quantified.

• However, the use of hypothethical judgments obliterates the difference be-
tween simulation and its open extension [Lassen 99], which saves us some
serious pain while formalising the proofs.

11

Applicative simulation: Twelf encoding

sim : index -> exp -> exp -> type.

%mode sim +N +E +F.

simbody : index -> (exp -> exp) -> exp -> type.

%mode simbody +N +E +F.

sim_all : sim zz E F. %% everything goes at step 0

simf : sim (ss I) E F

<- ({E’:exp -> exp} eval E (lam E’)

-> simbody I E’ F).

sb : simbody I E’ F

<- eval F (lam F’)

<- ({m:exp} sim I (E’ m) (F’ m)).

12

A tiny bit of meta-theory: reflexivity of simulation

% Reflexitivity of simulation

nsimrefl: {N : index} {E : exp} sim N E E -> type.

nsimr_z : nsimrefl zz _ sim_all.

nsimr_s : nsimrefl (ss N) _

(simf ([e:exp -> exp][u : eval E1 (lam e)]

sb ([x:exp] NS e u x) u))

<- ({e:exp -> exp} {u :eval E1 (lam e)} {x:exp}

nsimrefl N _ (NS e u x)).

%mode nsimrefl +I +E -D.

%block L2 : some {E:exp} block {e:exp -> exp}{u:eval E (lam e)} {x:exp}.

%worlds (L1 | L2) (exp).

%worlds (L2) (nsimrefl _ _ _).

%total M (nsimrefl M _ _).

13

Conclusion: what have we learned?

• What I’ve presented today is little more than a patch.

• However, it shows that with a very little thought you do not need to rubbish a
system such as Twelf for lacking a feature you may deem fundamental.

• It may be interesting to play out some more extensive examples (Howe’s proof)
to see the limitations of this approach.

• At the same time, I think that there is mounting evidence that co-induction
should be a first class citizen in Twelf-land.

• This may entail quite a different approach to totality checking, as the obvious
fix, guarded induction, does not seem compatible with Twelf’s current opera-
tional semantics.

14

