A Practical Approach to Co-induction in Twelf

Alberto Momigliano
Laboratory for Foundations of Computer Science
University of Edinburgh &
DSI, University of Milan

Funded in part by EU-project Mobius (IST-2005-015905)
TYPES 2006, Nottingham, April 18-21, 2006

Motivation

e Common complaint (see the POPLmark challenge): Twelf is a great system
but it cannot do “(insert your favorite theorem prover feature)”, so we’ll suffer
thru a first-order encoding to utilize systems where that feature is native).

e We'll show a way to do proofs by co-induction in Twelf here and now.

e The basic idea (dating back to Milner’s original CCS [1980]): define, when
possible, your co-inductive relation inductively, by mimicking the construction
of g fix by ordinal powers up to ® (see also Miller et al 1997).

e No change to the Twelf’s meta-theory, hence the fotality checker is available
and can certify relational type families as proofs.

e No free lunch: It's a bit awkward and better seen as an incentive to develop
the appropriate meta-theory. Still, all proofs in Milner [1980] are inductive.

1

Technical background

e Recall the set-theoretic characterization of a (co)inductive definition. Let f be
a monotone endo-function on a complete lattice P:

e Then lfix(f) = A{x|f(x) <x}. Dually, gfix(f) = Vix|x < f(x)}

e Fix a universe U. Its powerset is a complete lattice. A rule set [Aczel 77] is
any set R C U X X (here denumerable); let @ : 2U _, 2U and define

Oy (A)={ac U|(a,G) € R,GCA}

e The set co-inductively defined by X over U is g fix(CIDR), namely
Cld(R) =V{A|AC Pz (A)}. As a proof-rule:

JA.aeA AC Dg(A)
acCIld(R)

CI

The trick

e Recall the notion of ordinal power f T]q of a function f on a complete lat-
tice. From Tarski’s theorem, if f is monotone, by repeated application to the
empty set, it will converge to the set inductively defined by the rule set; if it is
continuous, it will converge in at most ® steps. Note that CI)K is continuous.

e What about the dual? Can we characterize gfix via iteration of the operator to
the universe of discourse? Yes, provided it satisfies co-continuity (preservation
of meets): f(VX) =V (fX) for every directed X C U.

flo =
fln+l = @x(f1n)
flo = n{fLk|keo} =gfi(®g)

e In practical terms, we are looking for decidable conditions on the “shape” of the
rule set, so that co-continuity holds. One such example is “finite branching”,
as we will see.

First example: divergence in the untyped A-calculus

el 4iv— app ep Ax. e 1 elex/x]

Tt (eq e2) T (eq e2)

div — app?2

e In words: a lambda never diverges. An application diverges if e; diverges;
otherwise it it converges to a lambda, its application to e, diverges.

e The /fix is empty, yet the gfix of this rules encode divergence. However, it can
be shown (trust me, it follows from determinism of evaluation) that the associ-
ated operator is co-continuous, so the set can be also computed inductively.

e S0, let's write some Twelf code. First declarations for expressions and lazy
evaluation. | assume familiarity with Twelf’s idea of encoding theorems as
relations between type families that need to be verified as total functions.

Evaluation in the lazy A-calculus

exp : type.
lam : (exp —> exp) —> exp.
app . exp —> exp —> exp.

$block L1 : block {x:exp}.

sworlds (L1) (exp).

eval : exp -> exp —> type.
$mode +{E:exp} —-{V:exp} eval E V.

ev_lam : eval
ev_app : eval
<_
<_

(lam E)

(lam E) .

(app E1 E2) V

eval E1

eval

(E E2)

(lam E)
V.

%% Note HOAS here

$%% Ignore this for now

$% subst as meta-level application

Divergence in the untyped A-calculus: inductive encoding

$% fixed point 1indexes
index : type.

77 : 1lndex.
ss : 1ndex -> 1ndex.

$%% divergence has additional argument ’index’
ndiverge : 1ndex —-> exp —-> type.
$mode ndiverge +N +E.

divbase : ndiverge zz E.

div_appl : ndiverge (ss N) (app E1 E2)
<- ndiverge N EI1.

div_app2 : ndiverge (ss N) (app E1 E2)
<- eval El (lam E)
<- ndiverge N (E E2).

Adequacy, |

e Finally, say that diverge e iff Vn : index. ndivergen e

e Adequacy: one direction, induction on “n”, using only the fix point property of
divergence. Hence encode the latter and prove it entails the inductive version:

div : exp —-> type.

dv_appl : div (app El E2)
<- div EI .

dv_app2 : div (app El E2)
<- eval E1 (lam E1")
<- div (E1’ E2)

dvdiv : {N:index} div E -> ndiverge N E -> type.

d0 : dvdiv zz _ divbase.

dl : dvdiv (ss N) (dv_appl D) (div_appl DN)
<- dvdiv N D DN.

d2 : dvdiv (ss N) (dv_app2 D VV) (div_app2 DN VV)
<- dvdiv N D DN.

$total N (dvdiv N P Q).

Adequacy, I

e Other way is meta-theoretical: need to apply CI rule, i.e. to show that
ndiverge is a “simulation”. This follows from definitions and from the fact
that the (big-step) evaluation is determinate (a fortiori, finitely branching).

e CAVEAT: co-induction is defined via universal quantification. It cannot be
queried existentially as a standard logic program. The preservation of the
invariant must be checked at every stage of the fixed point construction.

e To show, e.g. diverge omega we need to prove, by induction, ndiverge n
omega, for all n.

Proving €2 diverges

e Theorem: the Q combinator diverge. The standard formal proof (in Hybrid)
requires to guess the right simulation, which is in this case {omega} and af-
terward a 10 commands script. In Coq you can use the CoFix tactics and
guarded induction, but of course it clashes with HOAS and the overall sound-
ness of the latter still an issue.

e You write the theorem as relation in Twelf, where the first 2 cases would not
occur in an co-inductive proof:

omega = app (lam [x] (app x x)) (lam [x] (app x X)).
divomegaR: {I : index} ndiverge I omega -> type.

dub : ndivomegaR zz divbase.

dd : ndivomegaR (ss zz) (div_appl divbase).

dus : ndivomegaR (ss I) (div_app2 D1 (ev_lam))
<- ndivomegaR I DI.

Proving €2 diverges, cont’ed

e ...and have it checked for totality:

$mode +{I:index} —-{Q:diverge I omega} (divomegaR I Q).
$worlds () (divomegaR _ _).
$total I (divomegaR I P).

e Luckily, Carsten’s meta-theorem prover will also find the realizer for you:

$theorem div_omega: forall {N:index}
exists {P1 : ndiverge N omega} true.

$prove 3 N (div_omega N _).

$%%%% Twelf’s answer:

$theorem div_omega : {N:index} diverge N omega -> type.
$prove 3 N (div_omega N _).

$mode +{N:index} —-{Pi:diverge N omega} (div_omega N P1i).

$skolem div_omega#l : {N:index} diverge N omega.

10

Applicative simulation (Ong-Abramski)

The largest relation defined by:

Ve'. el hx. e — 3 FUAx. A Vm. € [m/x] < f[m/x]

Sim
e<f

Let’s play the same trick: e < f implies Vn : index. sim n e f. Conversely,
simn e f is indeed a simulation.

Note that, by the reduced syntax of LF (no existentials), we have to split the
judgment into two mutual recursive ones, so that F' is correctly quantified.

However, the use of hypothethical judgments obliterates the difference be-
tween simulation and its open extension [Lassen 99], which saves us some
serious pain while formalising the proofs.

11

Applicative simulation: Twelf encoding

sim : 1ndex —> exp —> exp —> type.

$mode sim +N +E +F.

simbody : index -> (exp -> exp) —-> exp —> type.

$mode simbody +N +E +F.

sim all : sim zz E F.

simf : sim (ss I) E F

$% everything goes at step 0

<- ({E":exp —-> exp} eval E (lam E’)

->
sb : simbody I E’ F
<- eval F (lam F’)

<- ({m:exp} sim I

simbody I E’ F).

(E" m) (F" m)).

12

A tiny bit of meta-theory: reflexivity of simulation

0

% Reflexitivity of simulation

nsimrefl: {N : 1ndex} {E : exp} sim N E E -> type.

nsimr z : nsimrefl zz _ sim all.
nsimr s : nsimrefl (ss N) _
(simf ([e:exp —> exp][u : eval E1 (lam e)]
sb ([x:exp] NS e u x) u))
<- ({e:exp -> exp} {u :eval E1l (lam e)} {x:exp}
nsimrefl N _ (NS e u x)).

$mode nsimrefl +I +E -D.

$block L2 : some {E:exp} block {e:exp —> exp}{u:eval E (lam e)} {x:exp}
sworlds (L1 | L2) (exp).

$worlds (L2) (nsimrefl).

$total M (nsimrefl M).

13

Conclusion: what have we learned?

e What |'ve presented today is little more than a patch.

e However, it shows that with a very little thought you do not need to rubbish a
system such as Twelf for lacking a feature you may deem fundamental.

e |t may be interesting to play out some more extensive examples (Howe’s proof)
to see the limitations of this approach.

e At the same time, | think that there is mounting evidence that co-induction
should be a first class citizen in Twelf-land.

e This may entail quite a different approach to totality checking, as the obvious
fix, guarded induction, does not seem compatible with Twelf’s current opera-
tional semantics.

14

