
Run your Research, Mind the Binders

Alberto Momigliano
joint work with James Cheney, Edinburgh

DI, MIlano

March 18, 2014



The problem

I Syntactic proofs underlie much modern PL/logic...
I type soundness
I (strong) normalization/cut elimination
I type preserving translations

I But, such proofs are notoriously fragile, one may say boring,
and thus often “write-only”, when not left to the reader

I Yeah. Right.

I That’s way we’re in the business of mechanized metatheorety



The problem

I Syntactic proofs underlie much modern PL/logic...
I type soundness
I (strong) normalization/cut elimination
I type preserving translations

I But, such proofs are notoriously fragile, one may say boring,
and thus often “write-only”, when not left to the reader

I Yeah. Right.

I That’s way we’re in the business of mechanized metatheorety



The problem

I Syntactic proofs underlie much modern PL/logic...
I type soundness
I (strong) normalization/cut elimination
I type preserving translations

I But, such proofs are notoriously fragile, one may say boring,
and thus often “write-only”, when not left to the reader

I Yeah. Right.

I That’s way we’re in the business of mechanized metatheorety



Not quite there yet

I Problem: Verification is
I lots of work!
I unhelpful if system has a bug
I only worthwhile if we already “know” the system is correct

I “model-checking” approach:
I searches for counterexamples
I produces helpful counterexamples for incorrect systems
I unhelpfully diverges for correct systems
I little expertise required
I fully automatic, CPU-bound



Not quite there yet

I Problem: Verification is
I lots of work!
I unhelpful if system has a bug
I only worthwhile if we already “know” the system is correct

I “model-checking” approach:
I searches for counterexamples
I produces helpful counterexamples for incorrect systems
I unhelpfully diverges for correct systems
I little expertise required
I fully automatic, CPU-bound



Find the bug 1

I A “published” formalization in Abella of Milner & Tofte:
Co-Induction in Relational Semantics. Look at the
environment-based operational semantics

Define eeval: venv -> tm -> val -> prop by

eeval (cons W K) one ;

eeval (cons W’ K) (shift M) W := eeval K M W;

eeval K (abs M) (closure K (abs M));

eeval K (fix (abs M)) (clo c\ (closure (cons c K) (abs M)));

eeval K (app M N) W :=

exists M’ W’,eeval K M (closure K (abs M’)) /\

eeval K N W’ /\ eeval (cons W’ K) M’ W.

I There are (at least) two bugs here, but this did not stop the
formalizer to go on and prove subject reduction.



Find the bug 1

I A “published” formalization in Abella of Milner & Tofte:
Co-Induction in Relational Semantics. Look at the
environment-based operational semantics

Define eeval: venv -> tm -> val -> prop by

eeval (cons W K) one ;

eeval (cons W’ K) (shift M) W := eeval K M W;

eeval K (abs M) (closure K (abs M));

eeval K (fix (abs M)) (clo c\ (closure (cons c K) (abs M)));

eeval K (app M N) W :=

exists M’ W’,eeval K M (closure K (abs M’)) /\

eeval K N W’ /\ eeval (cons W’ K) M’ W.

I There are (at least) two bugs here, but this did not stop the
formalizer to go on and prove subject reduction.



Find the bug 2

...

eeval K (abs M) closure K (abs M) );

eeval K (fix (abs M)) (clo c\ (closure (cons c K) (abs M)));

eeval K (app M N) W :=

exists M’ W’, eeval K M (closure K (abs M’)) /\

eeval K N W’ /\ eeval (cons W’ K) M’ W.

I The app case is wrong. The first premise should be

eeval K (app M N) W :=

exists M’ W’ K’, eeval K M (closure K’ (abs M’))...

I More seriously, evaluation gets stuck if M is a fix point.

I And who is this jerk anyway?

Oops. It’s me.

I Brigitte found that out (the specs being bugged, clearly) while
redoing the proof in Beluga

I But some kind of testing/counterexample search would have
saved us the trouble



Find the bug 2

...

eeval K (abs M) closure K (abs M) );

eeval K (fix (abs M)) (clo c\ (closure (cons c K) (abs M)));

eeval K (app M N) W :=

exists M’ W’, eeval K M (closure K (abs M’)) /\

eeval K N W’ /\ eeval (cons W’ K) M’ W.

I The app case is wrong. The first premise should be

eeval K (app M N) W :=

exists M’ W’ K’, eeval K M (closure K’ (abs M’))...

I More seriously, evaluation gets stuck if M is a fix point.

I And who is this jerk anyway? Oops. It’s me.

I Brigitte found that out (the specs being bugged, clearly) while
redoing the proof in Beluga

I But some kind of testing/counterexample search would have
saved us the trouble



Find the bug 2

...

eeval K (abs M) closure K (abs M) );

eeval K (fix (abs M)) (clo c\ (closure (cons c K) (abs M)));

eeval K (app M N) W :=

exists M’ W’, eeval K M (closure K (abs M’)) /\

eeval K N W’ /\ eeval (cons W’ K) M’ W.

I The app case is wrong. The first premise should be

eeval K (app M N) W :=

exists M’ W’ K’, eeval K M (closure K’ (abs M’))...

I More seriously, evaluation gets stuck if M is a fix point.

I And who is this jerk anyway? Oops. It’s me.

I Brigitte found that out (the specs being bugged, clearly) while
redoing the proof in Beluga

I But some kind of testing/counterexample search would have
saved us the trouble



Find more bugs:

I λ→× typing

Γ ` () : unit
x :τ ∈ Γ

Γ ` x : τ

Γ ` e1 : τ → τ ′ Γ ` e2 : τ ′

Γ ` e1 e2 : τ
Γ ` e : τ

Γ ` λx .e : τ → τ ′

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` (e1, e2) : τ1 × τ2

Γ ` e : τ1 × τ2
Γ ` π1(e) : τ1

Γ ` e : τ1 × τ2
Γ ` π2(e) : τ1

(λx .e) e ′ → e[e ′/x ]

πi (e1, e2) → ei

I This version is intentionally full of bugs.



Find more bugss

I λ→× typing

Γ ` () : unit
x :τ ∈ Γ

Γ ` x : τ

Γ ` e1 : τ → τ ′ Γ ` e2 : τ ′

Γ ` e1 e2 : τ

Γ, x :τ ` e : τ

Γ ` λx .e : τ → τ ′

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` (e1, e2) : τ1 × τ2

Γ ` e : τ1 × τ2
Γ ` π1(e) : τ1

Γ ` e : τ1 × τ2
Γ ` π2(e) : τ1

I Claim: Trying to verify correctness is not the fastest way to
find such bugs.



Example

I What is a “bug”?

I Here, I mean “counterexample to type soundness”

I Consider reduction step π2(1, ())→ ()

I Then we have

· ` 1 : int · ` () : unit

· ` (1, ()) : int× unit

· ` π2(1, ()) : int
(∗)

But no derivation of
· ` () : int

I If only we had a way of systematically searching for such
counterexamples...



Metatheory model-checking

I Goal: Catch “shallow” bugs in type systems, operational
semantics, etc.

I (Finite) Model checking: attempt to verify finite system by
searching exhaustively for counterexamples

I Highly successful for validating hardware designs
I Helpful in the (common) case that system has bug

I Partial model checking: search for counterexamples over some
finite subset of infinite search space

I Produce a counterexample if one exists
I Diverges if system is correct



Idea

I Represent object system in a suitable meta-system (logical
framework).

I Specify properties it should have.

I System searches (exhaustively/randomly) for counterexamples.

I Meanwhile, user can try a direct proof (or do something more
fun)



Pros

I Finds shallow counterexamples quickly

I Separates concerns (metatheory researchers focus on
efficiency, type system designers focus on semantics)

I Easy to use; don’t need to buy into/learn theorem prover
I Easy to implement (the naive solution)

I Many not-so-naive refinements possible



Cons

I Failure to find counterexample does not guarantee property
holds

I i.e., not doing automatic verification

I Hard to tell what kinds of counterexamples might be missed

I “Deep” bugs that were discovered in published type systems
(e.g. polymorphism vs. references) currently beyond scope



Redex

I Robbie Findler and co. took on this idea and marketed as
Randomized testing for PLT Redex
(http://redex.racket-lang.org/)

PLT Redex is a domain-specific language designed for
specifying and debugging operational semantics. Write
down a grammar and the reduction rules, and PLT Redex
allows you to interactively explore terms and to use
randomized test generation to attempt to falsify
properties of your semantics.

I In other terms, it’s animation plus QuickCheck for operational
semantics, but in Scheme!!!! No abstraction mechanisms.

I Proofs you say? Forget about it

http://redex.racket-lang.org/


Redex

I Robbie Findler and co. took on this idea and marketed as
Randomized testing for PLT Redex
(http://redex.racket-lang.org/)

PLT Redex is a domain-specific language designed for
specifying and debugging operational semantics. Write
down a grammar and the reduction rules, and PLT Redex
allows you to interactively explore terms and to use
randomized test generation to attempt to falsify
properties of your semantics.

I In other terms, it’s animation plus QuickCheck for operational
semantics, but in Scheme!!!! No abstraction mechanisms.

I Proofs you say? Forget about it

http://redex.racket-lang.org/


Redex 2

I Handles suites of unit tests (via animation)

I Nice facilities for OTT-style paper-to-code translation of specs

I Latex from specs, which is handy.

I Random testing of specs.

I They made quite a splash at POPL12 with Run Your
Research, where they investigated “the formalization and
exploration of nine ICFP 2009 papers in Redex, an effort that
uncovered mistakes in all nine papers.”

I The authors, you ask? Hudak, Peyton Jones, Henrik Nilsson,
Avik Chaudhuri, Jay McCarthy, Oderski. . .

I The bugs? type setting rules, some rules missing, some
unexpected behaviour of the model, one false theorem (but
fixable)



What Robbie does not tell you (in his talk)

I Redex offers no support for what we care about: binders

In one case (A concurrent ML library in Concurrent Haskell),
managing binding in Redex constituted a significant portion of
the overall time spent studying the paper. Redex should
benefit from a mechanism for dealing with binding,

I Judgments

Redex lacks direct support for non-algorithmic relations such
as declarative typing rules . . . we were forced to escape to
Redexs host language or to adopt an elaborate encoding,
which we would not expect a casual user to be comfortable
with. Extending Redex with support for logic programming. . .

I Test coverage

Random test case generators . . . are not as effective as they
could be. The generator derived from the grammar
. . . requires substantial massaging to achieve high test
coverage. This deficiency is especially pressing in the case of
typed object languages, where the massaging code almost
duplicates the specification of the type system



Other related work

I Programming
I QuickCheck for Haskell [Claessen and Hughes 2000] provides

type class libraries for generator functions that randomly
construct test data, and a logical specification language to
describe the properties the program should satisfy.

I Smallcheck [Christiansen and Sebastian Fischer 2008] the same
but exhaustive (up to n) counterexample search

I Proving
I IsaQuickcheck combines Isabelles code generation

infrastructure with random testing. It analyses the definitions
of inductively defined predicates to generate values that
satisfies them by construction

I Nitpick: systematic model enumeration using a SAT solver.



Our approach

I Represent object system in a suitable meta-system.
I James has implemented it for αProlog programs, and so it also

applicable to Nominal Isabelle
I The idea applies as well to λProlog/Twelf.

I Specify property it should have.
I Universal Horn formulas can specify type preservation,

progress, soundness, weakening, substitution lemmas, etc.

I System searches exhaustively for counterexamples.
I Bounded depth-first search, negation as failure/negation

elimination



Example

I αProlog: a simple extension of Prolog with nominal abstract
syntax.

var : name → exp. app : (exp, exp)→ exp. lam : 〈name〉exp → exp.

tc(G , var(X ),T ) :− List.mem((X ,T ),G ).
tc(G , app(M,N),U) :− ∃T .tc(G ,M, arr(T ,U)), tc(G ,N,T ).
tc(G , lam(〈x〉M), arr(T ,U)) :− x # G , tc([(x,T )|G ],M,U).

sub(var(X ),X ,N) = N.
sub(var(X ),Y ,N) = var(X ) :− X # Y .
sub(app(M1,M2),Y ,N) = app(sub(M1,Y ,N), sub(M2,Y ,N)).
sub(lam(〈x〉M),Y ,N) = lam(〈x〉sub(M,Y ,N)) :− x # (Y ,N).

I Equality coincides with ≡α, # means “not free in”, 〈x〉M is
an M with x bound.



Problem definition

I Define model M using a (pure) logic program P.

I Consider specifications of the form

∀~X .B1 ∧ · · · ∧ Bn ⊃ A

(note: disjunctive, existential A,Bi possible by adding clauses)

I A counterexample is a ground substitution θ such that

M � θ(G1) ∧ · · · ∧M � θ(Gn) ∧M 6� θ(A)

I The partial model checking problem: Does a counterexample
exist? If so, construct one.

I Obviously undecidable



Implementation

I Naive idea: generate substitutions and test; iterative
deepening.

I Write “generator” predicates for all base types.

I For all combinations, see if hypotheses succeed while
conclusion fails.

?− gen(X1) ∧ · · · ∧ gen(Xn) ∧ G1 ∧ · · · ∧ Gn ∧ not(A)

I Problem: extremely high branching factor
I even if we abstract away infinite base types

I Can only check up to max depth 1-3 before boredom sets in.



Implementation (II)

I Fact: Searching for instantiations of variables first is wasteful.

I Want to delay this expensive step as long as possible.

I Less naive idea: generate derivations and test.

I Search for complete proof trees of all hypotheses

I Instantiate all remaining variables

I Then, see if conclusion fails.

?− G1 ∧ · · · ∧ Gn ∧ gen(X1) ∧ · · · ∧ gen(Xn) ∧ not(A)

I Raises boredom horizon to depths 5-10 or so.



Implementation (III)

I Negation-as-failure is messy; can we do better?
I Idea: Use negation elimination instead

I AKA/similar to “constructive negation”, “intensional
negation”

I For each predicate A, define predicate not A denoting the
“complement” of A

I Avoids need to instantiate variables unless needed in
derivation; can reorder goals past negation:

?− G1 ∧ · · · ∧ Gn ∧ not A ∧ Gn+1 ∧ · · ·

I Implemented this also; finds some counterexamples faster

I Details in paper.



Negation elimination example

I Negation-eliminated versions of tc , subst: (after manual
simplification):

not tc(G , var(X ),T ) :− not mem(G ,X ,T ).
not tc(G , app(M,N),U) :− ∀∗T .(not tc(G ,M, arr(T ,U));

not tc(G ,N,T )).
not tc(G , lam(〈x〉M), arr(T ,U)) :− x # G , not tc([(x,T )|G ],M,U).

not subst(M,X ,N,M ′) :− neqexp(subst(M,X ,N),M ′).

I Note: Need a “case-unfolding” universal quantifier ∀∗
I Current implementation of ∀∗ examines type info at runtime

I Many unexploited optimization opportunities

I Note: Need neq at each type; we defined generically



Demo

I Debugging simply-typed lambda calculus spec.



Experience

I Implemented within αProlog

I Checked a bunch of examples from TAPL, LF type-checking
algorithm, the “faulty” λ-calculus

I We’re in the process of redoing some of Findler et co. Run
your research case studies

I Ideally such a facility should work atomatically in the
background when once you’re written up a model and its
properties (as it happens with IsaQuickCheck)



Experience (II)

I Writing specifications is dirt simple
I They make great regression tests
I No reason not to write & check on a regular basis

I Order of goals makes a big difference to efficiency;
optimization principles not clear yet.

I Not enough to just check “main” theorems
I System could be “trivially” sound
I Checking intermediate lemmas helps catch bugs earlier

I Bounded DFS and negation elimination have other
applications, so good to have anyway

I “show me all derivations of height ≤ 2”
I coverage analysis



Reality check

I Can we find known, deep type system bugs? Not yet...
I Naive Mini-ML with ref/∀ bug:

I boredom horizon 9
I smallest counterexample I can think of needs depth 18
I usual counterexample needs depth 30.

I So at this point, won’t catch “deep” bugs

I But useful for eliminating “shallow” bugs during development
of type system



Conclusions

I Model checking/counterexample search techniques are useful
for catching shallow bugs

I Complements, but doesn’t replace proof/verification

I Negation elimination improves efficiency/coverage; hope to
make more efficient too

I Many other refinements (heuristics?) possible

I Checker implemented in αProlog 1 1.43 (not the on-line
version).


