
A formalization of an Ordered Logical Framework in

Hybrid with applications to continuation machines

Alberto Momigliano

Laboratory for the Foundations of Computer Science

University of Edinburgh

Joint work with Jeff Polakow

MERλIN 2003, 26/08/2003

Overview of the Talk

• Towards reasoning HOAS-style in presence of imperative features.

• From LF to LLF and finally OLF.

• Implementing OLF with the 2-level approach in Hybrid.

• Case study: subject reduction of a continuation machine.

1

(Original) Motivation 1/3

• EPSRC grant: formal validation of the effect-based optimizations performed
by the MLj compiler for SML into Java bytecode [Benton & Kennedy ’98,’99],
as (contextual) equivalence preserving transformations. Compilation into a
typed intermediate language with effects.

• Need to devise techniques which are truly scalable to such languages. This
is a function of how abstract the encoding can be.

• The bar has been set by Twelf, providing full HOAS and paramount use of
parametric-hypo judgments: object-level environments as meta-level
contexts.

• Cannot be stressed enough: no need for partial function, tables and lookup,
and the relative proof obligations (weakening, substitution lemmata).

2

Motivation 2/3

• LF being intuitionistic not suited to model imperative features: if the store is

encoded as a context, you can lookup, but no elegant way to do updates .

• Linear Logic to the rescue: mutable data are modeled via linear

assumptions, so that updates are realized by a lookup (which consumes) and

a hypothetical judgment asserting the new value for the location.

• A store S≡ {c1 = v1 . . .cn = vn} is represented as the context

c1 : cell. . .c1 : cell;h1 : contains c1 pv1q . . .hn : contains cn pvnq.

• Traditional encodings are possible but tend to hijack the development (1/4 of

the proof of subject red. for MLR in the Coq library is entirely dedicated to the

implementation of tables)

3

Motivation 3/3

• This applies to every other imperative feature: for example the operational

semantics judgments of Grail [Stark et al’03] (TIL for Camelot) is

E ` 〈h,e〉 ⇓ 〈h′,v, r〉, where E maps names to values and the “mini-heap” h is

a triple of maps with co-domain classes, integer and reference values.

• The catch: a linear logic encoding requires the operational semantics to be in

continuation-passing style (*- is backwards linear implication, {·} universal

quantification). Take creating a reference:

ev_rf : eval (ref E) (rc ???) % cell escapes scope

*- eval E V

- ({c} contains c V - ???) % what’s next?

• CPS sequentializes evaluation steps so that there is always a next instruction.

4

Linear Frameworks

keval: cont -> instr -> val -> type.
kev_rf : keval K (ev (ref E)) Answer

- keval (K ; [x] ref x) (ev E) Answer
% add the instr. to the cont.

ev_idfr : keval K (ref* V) (new ([c] A c))
% bind the cell in the final answer

- ({c} contains C V - keval K (return (rc c)) (A c)).

• This can be done in LLF [Cervesato & Pfenning’96], but the price to pay is the
introduction of the level of instructions and of continuations/machine states.
Those needs to be typed as well and subject reduction for MLR becomes,
albeit very neat, more ‘populated’.

• Moreover, LLF at the moment is only a type-checker. Meta-theorem can be
expressed as relations, but there is no coverage checking or meta-theorem
prover (yet) (see Schürmann et al’s draft “A Meta Linear Logical Framework).

5

OLF’s Basics

• However, we can be push the idea of conservative extension of LF further
and internalize the very idea of machine state and continuation.

• Ordered Logical Framework [Polakow’00]: reasoning with unrestricted (or
intuitionistic), linear and ordered hypotheses.

• Unrestricted ones may be used arbitrarily, no order. Linear ones must be
used exactly once, no order. Ordered hypotheses must be used exactly once
subject to the order in which they were assumed. For example:

• Typing an expression is intuitionistic.

• Accessing and updating the store is linear.

• Ordered context represents the current stack of instructions.

6

Prototyping OLF

• Implementing OLF from scratch is a major project, requiring:

• Devising ordered dependent unification and type reconstruction.

• Practical resource management for Olli (the logical programming language).

This is particularly complicated in the presence of > [Polakow’01].

• Not to mention coverage checking or meta-theorem proving.

• Alternative: using the 2-level approach [McDowell & Miller’01] embedded in a

inductive proof assistant [Felty’02, Momigliano & Ambler’03].

7

2-Levels: the Idea

• Prolog 101: the vanilla meta-interpreter:

solve(true)
solve(A;B) :- solve(B); solve(A)
solve(A,B) :- solve(B),solve(A)
solve(A) :- atomic(A),prog(A,Body),solve(Body).

prog(parent(P,S), (mother(P,S) ; father(P,S)).
prog(father(abraham, isaac),true).

• Note that prog clauses do not have to be Prolog-like (i.e., inductive):

solve(A => B) :- assert(A),!,solve(B),retract(A).
% bad style, but you know what I mean

prog(nd(imp(A,B)),nd(A) => nd(B)).

8

2-Levels in Hybrid

• The interpreter will gladly perform (rightmost selection) evaluation, but
although it can be looked at as an inductive definition, it does not know that
and can’t do meta-reasoning (e.g. case analysis).

• So let’s take solve as an inductive definition in Isabelle HOLsequent-style,
say. This gives structural induction and case analysis. Same for prog.

• Not quite enough: we need to supprt HOAS at the syntax level, so a shallow
embedding into an inductive framework is out of the question, for the usual
monotonicity reasons.

• Answer: implement your own λ-calculus on top of your proof assistant,
consistent with the inductive side of the system, and use it as your basic
metalanguage. For example, Hybrid [Ambler,Crole & Momigliano’02].

9

Hybrid in one slide

• Deep encoding in Isabelle/HOL of a λ-calculus as an HOAS meta-language.

• Supports tactical theorem proving, induction and co-induction, but is

definitional, so consistent within a classical type theory.

• ‘Hybrid syntax’ gives the user HOAS, but this is a definition for an underlying

de Bruijn representation. This gives access to all the features of HOL.

• It features a predicate proper: : expr⇒ bool, that models the terms one-one

with the untyped λ-calculus modulo α and a predicate

abstr: : (expr⇒ expr)⇒ bool to rule out exotic functional term.

10

OLF as a Specification Logic 1/2

• Sequents Γ;Ω−→Π G, for Π the (unrestricted) program clauses Γ
unrestricted atoms; Ω ordered atoms; and G is the formula to be derived.

init ΩΓ;A−→Π A
init ΓΓ,A; · −→Π A

>RΓ;Ω−→Π >

Γ,A;Ω−→Π G →R
Γ;Ω−→Π A→G

Γ;Ω,A−→Π G
�R

Γ;Ω−→Π A�G

Γ; · −→Π G1 . . . Γ; · −→Π Gm Γ;Ω1−→Π G′1 . . . Γ;Ωn−→Π G′n
bc

Γ;Ωn . . .Ω1−→Π A

• Encoding of provability specialized to right ordered implication, via three

mutually inductive definitions:

Γ ;;Ω�n G :: [atmlist,atmlist,nat,oo]⇒ bool

Γ�n Goals :: [atmlist,nat,oo list]⇒ bool

Γ ;;Ω�n Goals :: [atmlist,atmlist,nat,oo list]⇒ bool

11

OLF as a Specification Logic 2/2

• A predicate for order-preserving split of a context (osplit Ω ΩL ΩR) (the
usual logic programming append in the other mode).

• Program clauses are ∀(A←−[G1, . . . ,Gm] ;; [G′1, . . . ,G
′
n]), i.e. atoms under

two lists of intuitionistic and ordered assumptions: this subsumes
multiplicative and additive conjunction.

• Backchain rule: fetch the program clause, prove intuitionistic assumptions,
consume ordered ones (in the right order):

[[A←−OL ;; IL & Γ ;;Ω�n OL & Γ�n IL]] =⇒ Γ ;;Ω �n+1 〈A〉

• Ordered list consumption (there is an analogours intuitionistic additive
version): split Ω in ΩR and ΩG, prove G form the latter and continue.

=⇒ Γ ;; []�n []
[[(osplit Ω ΩR ΩG) & Γ ;;ΩG�n G & Γ ;;ΩR�n Gs]] =⇒ Γ ;;Ω�n+1 G#Gs

12

A Continuation Passing Machine for the λ-calculus 1/3

Instructions i ::= eve | return v | app1v1e2

Continuations K ::= init | K;λx. i

Machine States s ::= K � i | answerv

st init :: init � return v ↪→ answerv

st return :: K;λx. i � return v ↪→ K � i[v/x]

st lam :: K � ev(lamx.e) ↪→ K � return (lam∗x.e)

st app :: K � ev(e1e2) ↪→ K;λx1.app1x1e2 � eve1

st app1 :: K � app1(lam∗x.e)e2 ↪→ K � eve[e2/x]

13

Encoding the CPM 2/3

• No explicit stack-like structure for K, rather we store instructions in the
ordered context:

K � i ; pKq =⇒ piq

• The goal init W� ex (ev e) evaluates e and instantiate W with the resulting
value: evaluate e with the initial continuation:

init � return v ; init W =⇒ ex (return pvq)

• ex (return i) means execute i, ex (return v) means passing v to the top
continuation on the stack:

K;λx. i � return v ; pKq,(cont (λx.piq)) =⇒ ex (return pvq)

where the ordering constraints force the proof of return pvq to focus on the
rightmost ordered formula.

14

Hybrid Code for the CPM 2/3

=⇒ ex (returnV)←−[〈init V〉] ;; []
[[abstrE]] =⇒ ex (returnV)←−[〈cont E〉,〈ex (E V)〉] ;; []
[[abstrE]] =⇒ ex (ev (lam E))←−[〈ex (return (lam∗ E))〉] ;; []

=⇒ ex (ev (E1 @ E2))←−[cont (λv. app1 v E2)� 〈ex (ev E1)〉] ;; []
[[abstrE]] =⇒ ex (app1 (lam∗ E) E2)←−[〈ex (ev (E E2))〉] ;; []

. . .

=⇒ ofK (T arrow T)←−[〈init V〉] ;; []
[[abstrK]] =⇒ ofK (T1 arrow T2)←−[〈cont K〉,〈ofK T arrow T2〉] ;;

[all v.(ofV v T1)→ 〈ofI (K v) T〉]

• No explicit continuation being typed, only an ordered assumption. First get a
continuation from the ordered context and then type it.

• Evaluation a transcription of the informal rules: Subject reduction follows
from:

[] ;; init V,Ω �i 〈ex I〉=⇒
∀T1T2.(�〈ofI I T1〉)⊃ .([] ;; init V,Ω�〈ofK (T1 arrow T2)〉)⊃ (�〈ofV V T2〉)

15

Discussion 1/2

• Script for subject reduction is ca. 150 lines, yet based on some infrastructure:

meta-theory of SL (weakening, cut-elim), filling steps and

• Resource Management : not implemented as a IO system [Hodas &

Miller’94], but tactics-driven:

• Deterministic splitting automatically applied and propagated in inversion rules

Γ ;;Ω�n [〈cont K〉] =⇒ ∃K′.Ω = [cont K′]

Γ ;;Ω�n [] =⇒ Ω = []

• As intros, it is user-driven – feasible as in verification (as opposed as logic

prog.) stacks are very small.

16

Discussion 2/2

• We may look at proof planning to automate the splitting process more,

especially to rule out impossible cases.

• Real benefits will kick in as soon as we start to add imperative features.

• No free lunch: the complexity of the encoding of environments as (finite) map

is shifted to the issue of proof search in a sub-structural constructive logics

(the SL).

• However, meta-theoretical properties of the latter can be re-used for other

object level languages.

17

Related and Future Work

• Previous case study with OLF such as [Polakow & Pfenning’00] (CPS

translation obeying stack-like properties wrt intermediate values) only done

with paper and pencil. Related/future work includes looking at relations with:

• Bunched logics [Pym’03], stack logics [Ahmed & Walker’03],

destination-passing style in the Concurrent Logical Framework [Watkins el

al.’03].

• Applications: op. semantics of typed intermediate languages (MIL-lite, Grail),

object calculi and their programming logics [Abadi & Leno’98], security of

stack access properties on JVM.

• GSOS with priorities, string matching.

18

