
Automatic Certification of Resource Consumption

Alberto Momigliano
Laboratory for Foundations of Computer Science

University of Edinburgh

Joint work with Lennart Beringer, Martin Hofmann and Olha Shkaravska

EU-project ”Mobile Resource Guarantees” (MRG), IST-2001-33149

LPAR’04, March 17th, 2005

0-0

MRG: PCC infrastructure for resource-related properties

• MRG is a joint University of Edinburgh / LMU Munich project funded for 2002-2005 by the

European Commission’s pro-active initiative in Global Computing.

• The aim is to endow mobile code with independently verifiable certificates describing

resource requirements, following the proof-carrying code paradigm.

• Applications with resource considerations: portable devices (phones, PDA’s,. . .),

Smartcards, embedded processors (car electronics,. . .), satellites, GRID services,. . .

• Example resources: memory (heap & stack), time, energy, network bandwidth, parameter

values of system calls

• PCC: code consumer requires transmitted program to come with verifiable proof that his

resource policy is fulfilled

• Approach (certifying compilation): translation from user language into machine language

derives independently verifiable certificates

Components of MRG

• We write programs in a custom high-level language Camelot , a functional language with

an OCaml-like syntax.

• Camelot is compiled into Grail , a functional intermediate code, which is isomorphic to a

subset of JVML.

• Costs are calculated using a annotated operational semantics for Grail, reflecting the

expansion into JVML.

• Grail Logic is a program logic which can express resource assertions about the

operational semantics.

• Camelot has a resource type inference system , which is used to produce proofs in a

logic of derived assertions .

• The annotated semantics, logics, and meta-theorems have all been formalised in Isabelle ,

and Isabelle proof scripts are used as our proof transmission format.

MRG architecture

JVMLJVML

Grail
Grail

CertificateCertificate

Camelot Type system

Network

Contraction

Certificate Checker

Expansion

Certifying Compiler

JVM

Resource Policy
OK?

PCC: us and them
Existing approaches:

• Classic PCC: trusted special-purpose proof systems for proving light-weight properties of

machine code (memory safety)

• Foundational PCC (Princeton): operational model (processor) formalised in higher-order

logic built on top of theorem prover (e.g. Twelf/HOL).

• “Yale-style” PCC . . .

MRG:

• Formalise instrumented operational semantics of (virtual) machine language

• Use a general-purpose program logic (sound, complete & expressive, little automation)

• Derive special logics (interpreted type systems for high level language) in theorem prover

• soundness of the heap logics with respect to the operational model is obtained from the

soundness of the base logic.

• the type systems infers invariants (in our case: method specifications) for the low-level

code based on the strategy used for compiling high-level programs.

• the proof rules are set up in such a way that methods can be proved in a largely

syntax-directed way, with side conditions that are of low complexity.

Source language: Camelot

Camelot: ML-like first-order functional language (polymorphism, no references)

• Example program: insertion sort:

type iList = !Nil | Cons of int * iList

let ins a l =

match l with Nil -> Cons(a,Nil)

| Cons(x,t)@_ -> if a < x then Cons(a,Cons(x,t))

else Cons(x, ins a t)

let sort l = match l with Nil -> Nil | Cons(a,t)@_ -> ins a (sort t)

• Notation @_indicates destructive pattern match

• Whole program compilation where each Camelot function yields one JVM method

• Compilation includes an explicit memory manager (freelist)

• PCC-certificate: encoding of the result of the type inference in a program logic, bundled

with program for transmission

• Memory consumption inferred from program annotations using a type system

• Result: ins consumes one memory cell, independent from actual input, sort does not

consume any memory (in-place)

• O’Camelot: object-oriented extension (see SML.net).

Mobile code: Grail 1/2
• A subset of Java bytecode. Combine OO-aspects of bytecode (fields, methods) with

(impure) low-level functional language

• View as a functional intermediate language: first-order functions; no nesting; all free

variables in parameters; applications only to values.

• Imperative view: JVML or easily convertible into various virtual machines formats:

registers = variables, jumps = tail-calls

• Theorem: the two coincide under mild syntactical restrictions (Leroy’s bytecode condition)

• This makes conversion Grail/JVML reversible

• A Grail program is a list of methods each containing a list of tail-recursive functions.
e ∈ expr ::= null | i | x | prim p x x

| new c [ti := xi]

| x.t | x.t:=x

| let x = e in e | e;e

| if x then e else e

| call f | c.m(a)

a ∈ args ::= x | null | i

Grail: resource-instrumented operational semantics

• Based on (impure) big-step functional view:

E ` h, e ⇓ (h ′, v, p)

where r is a resource value in some resource algebra R, with families of operations for

each of the syntactic constructs of Grail:

• JVM case: R consists of quadruples:

r = (clock, callc, invkc, invkdpth)

• Stack usage is approximated; heap usage calculated as the difference size(h ′)−size(h).

• Resource algebras usefully generalise to other resource/security policies

– parameter limit flags set by parameter limit policies; here simply R = {true, false}.

– traces of method invocation sequences, so e.g. R = {m∗} where m ranges over

method names.

– read-write effects on heap locations, where R = {〈Rd, Or, RdWr〉} for

Rd, Wr, RdWr ⊆ Locations.

– Others: live variables, complete traces of heaps during execution, . . .

Demo: what you’re going to see

• Producer side:

• High level source code: Insort.cmlt . Certifying compiler emits:

1. Bytecode: Insort.class, Insort$$ dia.class

2. Inference of heap consumption: Insort.lfd

3. Isabelle theory certificate containing above specs: InsortCertificate.thy

• Consumer side. De-assembler emits

1. Isabelle representation of mobile code: Insort.thy

2. Isabelle statement of resource predicate and related lemmas

Insort Consumer1.thy, Insort Consumer2.thy

3. Isabelle tactic to reconstruct proof: Insort TACTIC.thy

Program logic 1/2

• Embedding a la Kleymann: deep embedding of language, shallow embedding of

assertions, with soundness and (relative) completeness formally proven in theorem prover

• Pragmatic issue: meta-theoretic investigation vs program verification (automation). In

MRG-PCC both issues are important!

• Judgements take the form G � e : P

– e is a Grail expression;

– G is a set of assumptions context for recursive methods and functions;

– P is an assertion, i.e. a predicate in the meta-logic over semantic values

P[E, h, h ′, v, r]

relating the environment, initial and final heaps, the result and the resource value.

• No auxiliary variables (usage of pre-heap inspired by hooked variables in VDM)

• Judgements interpreted as partial “correctness” statements. Termination orthogonal.

G � x.t : λ E h h ′ v p.∃ l. E〈x〉 = Ref l ∧ h ′ = h ∧

v = h ′(l).t ∧ p = Rgetf (x, t)

(VGETF)

Program logic 2/2: example specification

insSpec ≡ SPEC List ins [a1, a2] =

λ E h h ′ v p .∀ i r n X .

(E〈a1〉 = i ∧ E〈a2〉 = Ref r ∧ h, r |=X n

−→ |dom(h)| + 1 = |dom(h ′)| ∧ p ≤ 〈(An + B) (Cn + D) (En + F) (Gn + H)〉)
sortSpec ≡ SPEC List sort [a] =

λ E h h ′ v p .∀ i r n X .

(E〈a〉 = Ref r ∧ h, r |=X n −→ |dom(h)| = |dom(h ′)| ∧ p ≤ . . .)

Lemma: insSpec ∧ sortSpec −→ � List.sort([xs]) : SPEC List sort [xs]

• h, r |=X n defined inductively, introduces case-splits during verification

• Proof rules contain existentials over intermediate heaps and instrumentations

• ; automatic proof search impractical (and not desirable in MRG) even after applying all

proof rules (VCG): automation by compiler difficult

• Certificate Generation: exploit program structure and compiler analysis by proving

properties that are more closely related to the type system

Type-based analysis of Camelot programs

Type system by Hofmann and Jost (POPL 2003):

• Input: program containing a function start : string list -> unit

Output: a linear function s such that start (l) will not call new when evaluated in a heap

h where

– l points in h to a linear list of some length n

– the freelist which forms a part of h is well-formed

– the freelist does not overlap with l

– the freelist has length not less than s(n)

• How does this work?

– Annotate types with freelist annotations for each constructor: L(k)

– Judgements Γ, n ` e : T,m include information about initial and final size of freelist

– Express final size of freelist as function of the size of the output

– Complement this type system with some method for preventing deallocation of live

cells (linear typing, usage aspects, layered sharing,. . .)

What is certificate generation?

• Verify the soundness of the type system w.r.t. the Camelot compilation by

– interpreting the judgements in the program logic, using basic predicates about freelist

representation and length, disjointness conditions of data-structures, footprint of

program fragments

– formally proving (in Isabelle/HOL) derived proof rules in the base logic

• Formulate the rules such that automated verification is possible

– simple side conditions, no ∃-instantiations, syntax-directed;

– compile-time analysis is communicated as method-level specifications (invariants)

item

• Fixed assertion format JU, n, [Γ] I T,mK
n, m ∈ N represent the numerical results from the analysis. In the interpretation these

numbers will relate to the initial and final length of the freelist, respectively.

Γ is the typing context, a partial map from program variables to extended types.

U (a finite set of program variables) is used to enforce the linear typing discipline.

T indicates the type of an expression e that satisfies the assertion.

Proof rules
• Camelot extended typing

List.ins : 1, I × L(0) → L(0), 0

List.sort : 0, L(0) → L(0), 0

• Derived assertions:

List.ins : J{a, l}, 1, [a : I, l : L(0)] I L(0), 0K

List.sort : J{l}, 0, [l : L(0)] I L(0), 0K

• LFD rule (Let):

Γ1, n ` e1 : A, k Γ2, x : A, k ` e2 : B, m

Γ1Γ2, n ` let x = e1 in e2 : B, m

• Note linearity condition for eliminating deallocation of live cells

• Proof rule (Let), provided U1 ∩ (U2 \ {x}) = ∅:

G � e1 : JU1, n, [Γ] I S, kK G � e2 : JU2, k, [Γ, x : S] I T, mK
G � let x = e1 in e2 : JU1 ∪ (U2 \ {x}), n, [Γ] I T, mK

†

• Atomic rules for [non] destructive match-statements and for invocations of make

• Only the verification of the wrapper (uniform for all programs) needs to unfold the

interpretation into the core logic

Automated verification

• Tactic proveMe that

– invokes derived proof rules (syntax-directed) and

– discharges side conditions (set inclusions, arithmetic (in-)equalities).

– Methods verified once, combination for mutual recursion via cut rule and parameter

adaptation

– Functions (basic blocks) verified once, via optimised treatment of merge points

that combines imperative (dominator property) and functional (function parameters)

viewpoints

– Currently verified programs: functions over lists and trees (append, flatten, insertion

sort & heap sort, . . .)

– No effort whatsoever on efficiency/proof sizes/negotiation. . .

– On-going generalization to algebraic data-type and usage aspects.

Discussion
Future work:

• Engineer existing system of derived assertions (sharing, usage-aspects, separation), and

evaluate on bigger examples

• Extract stand-alone proof checker

• Derive specialised logics and certificate generation for other resources: frame stack, time,

limits and separation conditions on method parameters

• Make them compositional

• Mobius: play this game with Java as source language

Conclusion:

• MRG-motto: certificate generation by interpreting high level type-systems in program logic

for bytecode

• Presented expressive program logic for low-level language

• Chain of abstractions: operational semantics → general program logic → derived

specialised logics with automation

• Development backed up by implementation in Isabelle/HOL

• Sweet spot in debate “Classic vs. Foundational” PCC:

