Property-Based Testing via Proof Reconstruction

Work-in-progress

Alberto Momigliano
joint work with Rob Blanco and Dale Miller

LFMTP17

Sept. 8, 2017
After almost 20 years of formal verification with Twelf, Isabelle/HOL, Coq, Abella, I’m a bit worn out.

I still find it a very demanding, often frustrating, day job.
After almost 20 years of formal verification with Twelf, Isabelle/HOL, Coq, Abella, I’m a bit worn out.

I still find it a very demanding, often frustrating, day job.

Especially when the theorem I’m trying to prove is, ehm, wrong. I mean, almost right:
After almost 20 years of formal verification with Twelf, Isabelle/HOL, Coq, Abella, I’m a bit worn out.

I still find it a very demanding, often frustrating, day job.

Especially when the theorem I’m trying to prove is, ehm, wrong. I mean, *almost right*:
- statement is too strong/weak
- there are minor mistakes in the spec I’m reasoning about

A failed proof attempt not the best way to debug those kind of mistakes

That’s why I’m inclined to give *testing* a try (and I’m in good company!)
After almost 20 years of formal verification with Twelf, Isabelle/HOL, Coq, Abella, I’m a bit worn out.

I still find it a very demanding, often frustrating, day job. Especially when the theorem I’m trying to prove is, ehm, wrong. I mean, *almost right*:

- statement is too strong/weak
- there are minor mistakes in the spec I’m reasoning about

A failed proof attempt not the best way to debug those kind of mistakes.

That’s why I’m inclined to give *testing* a try (and I’m in good company!)

Not any testing: *property-based testing*
A light-weight validation approach merging two well known ideas:

1. automatic generation of test data, against
2. executable program specifications.

Brought together in *QuickCheck* (Claessen & Hughes ICFP 00) for Haskell

The programmer specifies properties that functions should satisfy

QuickCheck tries to falsify the properties by trying a large number of *randomly* generated cases.
let rec rev ls =
 match ls with
 | [] -> []
 | x :: xs -> append (rev xs, [x])

let prop_revRevIsOrig (xs:int list) =
 rev (rev xs) = xs;;

do Check.Quick prop_revRevIsOrig ;;
>> Ok, passed 100 tests.

let prop_revIsOrig (xs:int list) =
 rev xs = xs
do Check.Quick prop_revIsOrig ;;

>> Falsifiable, after 3 tests (5 shrinks) (StdGen (518275965,..)
[1; 0]
Not so fast/quick...

- **Sparse pre-conditions:**

 \[
 \text{ordered } \text{xs} \implies \text{ordered } (\text{insert } x \text{ xs})
 \]

- Random lists not likely to be ordered ... Obvious issue of *coverage*

- QC’s answer:

 - monitor the distribution

 - write your own generator (here for ordered lists)

 - *Quis custodiet ipsos custodes?*

 - Generator code may overwhelm SUT. Think red-black trees.

 - We need to *shrink* random cex to understand them. So, with generators we need to implement (and trust) *shrinkers*

- Exhaustive generation up to a bound may miss corner cases

- Huge literature we skip, since...
...We are interested in the specialized area of *mechanized meta-theory*

Yet, even here, verification still is

- lots of work (even if you’re not burned out)!
- unhelpful if system has a bug — only worthwhile if *we already “know” the system is correct*, not in the design phase!

(Partial) “model-checking” approach to the rescue:

- searches for counterexamples
- produces helpful counterexamples for incorrect systems
- unhelpfully diverges for correct systems
- little expertise required
- fully automatic, CPU-bound

PBT for MMT means:

- Represent object system in a logical framework.
- Specify properties it should have.
- System searches (exhaustively/randomly) for counterexamples.
- Meanwhile, user can try a direct proof (or go to the pub)
From programming to mechanized meta-theory

- ... We are interested in the specialized area of *mechanized meta-theory*

- Yet, even here, verification still is
 - lots of work (even if you’re not burned out)!
 - unhelpful if system has a bug — only worthwhile if we already “know” the system is correct, not in the design phase!

- (Partial) “model-checking” approach to the rescue:
 - searches for *counterexamples*
 - produces helpful counterexamples for incorrect systems
 - unhelpfully diverges for correct systems
 - little expertise required
 - fully automatic, CPU-bound
...We are interested in the specialized area of \textit{mechanized meta-theory}

Yet, even here, verification still is
\begin{itemize}
 \item lots of work (even if you’re not burned out)!
 \item unhelpful if system has a bug — only worthwhile if we already “know” the system is correct, not in the design phase!
\end{itemize}

(Partial) “model-checking” approach to the rescue:
\begin{itemize}
 \item searches for \textcolor{red}{counterexamples}
 \item produces helpful counterexamples for incorrect systems
 \item unhelpfully diverges for correct systems
 \item little expertise required
 \item fully automatic, CPU-bound
\end{itemize}

\textbf{PBT} for MMT means:
\begin{itemize}
 \item Represent object system in a logical framework.
 \item Specify properties it should have.
 \item System searches (exhaustively/randomly) for \textcolor{red}{counterexamples}.
 \item Meanwhile, user can try a direct proof (or go to the pub)
\end{itemize}
Isn’t testing the very thing theorem proving want to replace?

Oh, no: test a conjecture before attempting to prove it and/or test a subgoal (a lemma) inside a proof

The beauty (wrt general testing) is: you don’t have to invent the specs, they’re exactly what you want to prove anyway.

In fact, when Isabelle/HOL broke the ice adopting random testing some 15 years ago, many followed suit:

- a la QC: Agda (04), PVS (06), Coq with QuickChick (15)
- exhaustive/smart generators (Isabelle/HOL (12))
- model finders (Nitpick, again in Isabelle/HOL (11))

In fact, Pierce and co. are considering a version of Software Foundations where proofs are completely replaced by testing!
Where is the logic (programming)?

- Given the functional origin of PBT, the emphasis is on executable specs and this applies as well to PBT tools for PL (meta)-theory (PLT-Redex, Spoofax).
- QuickChick and Nitpick handle some **inductive** definitions, QC by deriving generators that satisfy essentially for logic programs, for N. by reduction to SAT problems...
- An exception is αCheck, a PBT tool on top of αProlog, using nominal Horn formulas to write specs and checks
- Given a spec $\forall \vec{X}. A_1 \land \cdots \land A_n \supset A$, a **counterexample** is a ground substitution θ s.t. $M \models \theta(A_1) \land \cdots \land M \models \theta(A_n)$ and $M \not\models \theta(A)$ for model M of a (pure) nominal logic program.
- Two forms of negation: negation as failure and negation elimination
- System searches **exhaustively** for counterexamples with a fixed iterative deepening search strategy
In fact, functional approaches to PBT are rediscovering logic programming:
 ▶ Unification/mode analysis in Isabelle's *smart generators* and in Coq's QC
 ▶ (Randomized) backchaining in PLT-Redex

What the last 25 years has taught us is that if we take a proof-theoretic view of LP, good things start to happen

And this now means focusing in a sequent calculus.

In a nutshell, the (unsurprising) message of this paper: the generate-and-test approach of PBT can be seen in terms of focused sequent calculus proof where the positive phase corresponds to generation and a single negative one to testing.
As the plan is to have a PBT tool for **Abella**, we have in mind specs and checks in multiplicative additive linear logic with (for the time being) least fixed points (Baelde & Miller).

E.g., the append predicate is:

\[
app \equiv \mu \lambda A \lambda xs \lambda ys \lambda zs \, (xs = nl \land^+ ys = zs) \lor \\
\exists x' \exists xs' \exists zs' (xs = cns x' xs' \land^+ zs = cns x' zs' \land^+ A xs' ys zs')
\]

Usual polarization for LP: everything is positive — note, no atoms.

Searching for a cex is searching for a proof of a formula like \(\exists x: \tau [P(x) \land^+ \neg Q(x)]\) is a single bipole — a positive phase followed by a negative one.

Correspond to the intuition that generation is hard, testing a deterministic computation.
A further step: FPC

- A flexible and general way to look at those proofs is as a proof reconstruction problem in Miller’s Foundational Proof Certificate framework.
- FPC proposed as a means of defining proof structures used in a range of different theorem provers.
- If you’re not familiar with it, think a focused sequent calculus augmented with predicates (clerks for the negative phase and experts for the positive one) that produce and process information to drive the checking/reconstruction of a proof.
- For PBT, we suggest a lightweight use of FPC as a way to describe generators by fairly simple-minded experts.
We defined certificates for families of proofs (the generation phase) limited either by the number of inference rules that they contain, by their size, or by both.

They essentially translate into meta-interpreters that perform bounded generation, not only of terms but of derivations.

As a proof of concept, we implement this in λProlog and we use \textit{NAF} to implement negation — it’s a shortcut, but theoretically, think fixed point and negation as $A \rightarrow \bot$.

We use the two-level approach: OL specs are encoded as prolog clauses and a check predicates will meta-interpret them using the size/height certificates to guide the generation.

Checking $\forall x:elt, \forall xs, ys:eltlist \ [rev \ xs \ ys \rightarrow xs = ys]$ is

\[
\begin{align*}
cexrev \ Xs \ Ys & : - \\
\text{check} \ (\text{qgen} \ (\text{qheight} \ 3)) \ (\text{is eltlist} \ Xs), & \% \text{generate} \\
\text{solve} \ (\text{rev} \ Xs \ Ys), & \text{not} \ (Xs = Ys). & \% \text{test}
\end{align*}
\]
From algebraic to binding signatures

- The proof-theoretic view allows us to move seamlessly from standard first-order terms to higher-order LP with λ-tree syntax, which was the whole selling point.
 - No current tool supports proofs and disproofs with binders
- This means accommodating the \bigtriangledown-quantifier
- Here we take another shortcut and restrict to Horn specs (no hypothetical encodings).
 - ... but we have experimented with kernels for logics such LG as well
- It’s well known that in this setting nabla can be soundly encoded by λProlog’s universal quantification
Case study

- A simply-typed λ-calculus with constructors for integers and lists, following a PLT-Redex benchmark:

 Types $A, B ::= \text{int} \mid \text{ilst} \mid A \rightarrow B$

 Terms $M ::= x \mid \lambda x : A. M \mid M_1 M_2 \mid c \mid \text{err}$

 Constants $c ::= n \mid \text{plus} \mid \text{nil} \mid \text{cons} \mid \text{hd} \mid \text{tl}$

- Encode it in the usual two-level approach, but with explicit contexts (to stay Horn).

- Insert a bunch of mutations in the static and/or dynamic semantics

- Try to catch them as a violation of type safety
Measurements

<table>
<thead>
<tr>
<th>bug</th>
<th>check</th>
<th>αC</th>
<th>λP</th>
<th>Description/Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>preservation</td>
<td>0.3</td>
<td>0.05</td>
<td>range of function in app rule</td>
</tr>
<tr>
<td></td>
<td>progress</td>
<td>0.1</td>
<td>0.02</td>
<td>matched to the arg. (S)</td>
</tr>
<tr>
<td>2</td>
<td>progress</td>
<td>0.27</td>
<td>0.06</td>
<td>value ($cons ; v) ; v$ omitted (M)</td>
</tr>
<tr>
<td>3</td>
<td>preservation</td>
<td>0.04</td>
<td>0.01</td>
<td>order of types swapped</td>
</tr>
<tr>
<td></td>
<td>progress</td>
<td>0.1</td>
<td>0.04</td>
<td>in function pos of app (S)</td>
</tr>
<tr>
<td>4</td>
<td>progress</td>
<td>t.o.</td>
<td>207.3</td>
<td>the type of cons return int (S)</td>
</tr>
<tr>
<td>5</td>
<td>preservation</td>
<td>t.o.</td>
<td>0.67</td>
<td>tail reduction returns the head (S)</td>
</tr>
<tr>
<td>6</td>
<td>progress</td>
<td>24.8</td>
<td>0.4</td>
<td>hd reduction on part. applied cons (M)</td>
</tr>
<tr>
<td>7</td>
<td>progress</td>
<td>1.04</td>
<td>0.1</td>
<td>no eval for argument of app (M)</td>
</tr>
<tr>
<td>8</td>
<td>preservation</td>
<td>0.02</td>
<td>0.01</td>
<td>lookup always returns int (U)</td>
</tr>
<tr>
<td>9</td>
<td>preservation</td>
<td>0.1</td>
<td>0.02</td>
<td>vars do not match in lookup (S)</td>
</tr>
</tbody>
</table>

Our implementation using size as a bound vs. αProlog
Conclusions

- PBT is now most major proof assistants to complement theorem proving with a preliminary phase of conjecture testing.
- We have shown as the FPC framework can be instantiated to give a proof-theoretic reconstruction of PBT.
- We have seen as this extends as expected to binding signature to perform meta-theory model-checking.
- We have presented a proof-of-concept implementation in λProlog using NAF, which, in its naivety, is already effective.
Future Work: more case studies

- Search for deeper known bugs
 - “value” restriction in ML with references and let-polymorphous intersection types with computational effects
- Search for unknown bugs in (λ)Prolog code “in the wild” (e.g. Hannan’s “Extended natural semantics” or even old CENTAUR stuff)
- Tackle coinductive specs, to look for
 - Two process that are similar but not bisimilar
 - λ-terms that are ground- but not applicative-bisimilar...
 Tabling could prove handy.
- Implement random generators e.g. with an unfold expert that may flip a coin when selecting a clause to backchain on.
Future Work: architecture

- Integrate with Abella’s workflow, both at the top-level (disproving conjectures) and inside a proof attempt (disproving subgoals).
- Long-ish time view: a mini Sledgehammer protocol for Abella, by which conjectures are under the hood PB-tested: if no cex reported proof outlines are used to try and conclude the proof.
- Keeping in mind that Abella’s implementation not immediately meant for search
- Previous attempts with FPC kernels with primitive \(\nabla\) written as inductive definition in Abella proper seems too slow for generation
Suppose your PBT tool reports a cex. Now what? You’re not getting payed just for finding faults... Staring at a potentially huge spec even with a cex in hand not the best way to go. Two issues:

1. Soundness: your spec is plain wrong and returns an answer that should not hold
2. Completeness: you’ve forgotten to encode some info and some answers are not produced.

FPC to the rescue (possibly):

1. Use certificate distillation to restrict to a more manageable set of suspects
2. Use abductive experts to collect sets of assumptions that should hold but don’t
Thanks!