
Induction and Co-induction

in Sequent Calculus

Alberto Momigliano

Department of Mathematics and Computer Science

University of Leicester

Joint work with Dale Miller and Alwen Tiu

Heriot-Watt

Edinburgh, May 23rd, 2003

Overview of the Talk

• Motivations and history.

• Partial Inductive Definitions and FOλ∆IN.

• Induction and Coinduction rules.

• Implementation

• Circular proofs

• Future work

1

Motivation 1/2

• Logical Framework: Meta-language for the specification,

implementation and verification of the (meta)theory of

deductive systems.

• Deductive systems encoded as logical theories. Properties

verified inside the lf possibly via proof search paradigm.

• Example: static and dynamic (natural) semantics of a

functional programming language (Mini-ML).

• Reasoning within a specified system: Implementation and

execution of algorithms. Judgments for evaluation (e⇓ v)

and type inference (Γ ` e : τ).

2

Motivation 2/2

• Reasoning about the meta-theoretic properties of a
deductive system. Example: subject reduction: if
e⇓ v and ` e : τ then ` v : τ .

• The framework must be able to support encodings of
informal (mathematical) entities as abstract as possible, do
not introduce ad hoc low-level notions.

• This means (to me) supporting Higher Order Abstract
Syntax (HOAS). Yet, to preserve adequacy of encodings, lf
is intentionally weak, but must support for (co)inductive
reasoning.

• The catch: HOAS and (co)induction are prima facie
incompatible.

3

Relevant History of (Co)Induction in LF’s

• From Gentzen to iterated inductive defs [Martin-Löf’71]

• Impredicative encoding of inductive types in system F
[Böhm & Berarducci’85].

• Mendler-style (co)inductive types [Mendler’87], [Geuvers’92]

• CCInd [Pfenning & Paulin ’90], CCCoInd [Gimenez’96],
inductive definitions in HOL [Melham’92,Paulson’97].

• Work on type-based termination [Barthe et al’03],
(co)iteration [Abel et al’02], category-theoretic analysis. . .

• Sequent calculus: not much. Back to the drawing board:

4

Set-theoretic Induction

• A rule set R is set of pairs 〈G,A〉 (notation: A
4
= G) on an

universe U, such that A ∈ U , G ⊆ 2U).

• Id(R), the set inductively defined by R is the intersection
of all R-closed subset of U, i.e. sets S such that for every
A
4
= G ∈ R, G ⊆ S entails A ∈ S.

• Set-theoretically to prove a property P ⊆ Id(R) by rule
induction means showing that P is R-closed.

• Equivalently for ΦR : 2U → 2U , ΦR monotone define

ΦR(S) = {A ∈ U | A 4
= G ∈ R, G ⊆ S}. Id(R) [CoId(R)] is

the least [greatest] fixed point of this operator.

5

Partial Inductive Definitions 1/3

• More interestingly: Partial Inductive Definitions

[Hallnäs’91]: A
4
= C, where C is not simply a set of atoms,

but:

Conditions C ::= > |⊥| A | (Ci)i∈I | C → C′

• Logically speaking, they correspond to higher-order rules

[Schroeder-Heister’84] or parametric-hypothetical

judgments [Martin-Löf’85]. In general, they do not yield

monotone inductive operators.

• Note: logic of ID may be classical or constructive, but logic

of PID makes sense only in a strictly constructive setting.

6

Partial Inductive Definition: Our Setting 2/3

• Sequent calculus for intuitionistic logic Γ −→ B over simply
typed λ-terms, but no quantification of predicates, with:

• Definitions, i.e. finite sets of clause

∀x̄[p1(t̄1)
4
= B1] . . . ∀x̄[pn(t̄n)

4
= Bn] (n ≥ 0)

The symbol
4
= not a logical connective, just to denote

definitional clauses.

• Left and right rules for introducing defined predicates with
possibly non-Horn clauses [Halnass’91, S. Heister’93].

• Differently from set(type)-theoretic inductive definitions,
case analysis (left rule) is not bungled up with induction
principles and monotonicity.

7

Partial Inductive Definitions 3/3

• Fix a definition and a equality theory, here ho-patterns.

• Right rule: as a logic program, this is backchaining.

Γ −→ Bθ
Γ −→ A (defR), Hθ = A, for some clause ∀x̄[H

4
= B]

• Left rule:

{Bθ,Γθ −→ Cθ | θA = θH, for some clause ∀x̄[H
4
= B]}

A,Γ −→ C
(defL)

• Unification used to select clauses from a definition.
Eigenvariables can be instantiated. The set of premises can
be empty, finite, or infinite since in some theories CSUs are
not effectively computable.

8

Encoding Mini-ML 1/4

Terms e ::= x | fun x . e | e @ e′ | fix x. e

• fix x. e (and fun x . e) is a binder. It induces an equivalence

class under α-renaming, and requires capture avoiding

substitutions: encoded how?

• This is the crucial choice, as it will dominate the formal

development, in particular the representation of judgments.

• Why reinvent the wheel? Use a (weak) λ-calculus as a

meta-language [Church’40]. It has a single binder λ, from

which any other one is definable: built-in α-equivalence,

well-behaved substitutions and more.

9

Mini-ML: Operational Semantics 2/4

• Big step (lazy) evaluation e⇓ v:

e1 ⇓ fun x . e′1 [e2/x]e′1 ⇓ v ev app
(e1 @ e2)⇓ v

ev fun
fun x . e⇓ fun x . e

[fix x. e/x]e⇓ v
ev fix

fix x. e⇓ v

• Key notion is substitution of expressions, cf. ev fix, ev app.

• The latter is a major hassle and so easy to get it wrong.

• Why not use λ-calculus substitution, i.e. β-reduction ?

10

Mini-ML: Encoding 3/4

• Encode it in Full HOAS (no separate category of variables):
object-level binder represented via the meta-level binder λ
and the function space from the logic.
exp : type.

fun : (exp -> exp) -> exp.

@ : exp -> exp -> exp.

fix : (exp -> exp) -> exp.

• For example pfix x. x @ xq = fix(λx . x @ x). Note: exp

cannot be a data-type because of negative occurrences, so
those are simply constants. Crucially, freeness properties
must be derivable, wrt inversion on judgments or case
analysis on syntax.

• Hence, PID’s not (a fragment) of higher-order logic.

11

Intermission: Free Equality

• There are choices. Standard one (discarded here to keep

linearity of heads) is equality as a definition X = X
4
= >.

Freeness follow by defL, see injectivity of OL binders:

defR> −→ E = E
defL

fun λx.E x = fun λx. F x −→ E = F

• Sequent calculus rendition of free equality [S-Heister’94].

• Exploiting unification, which is now restricted to equality
reasoning (definitions as Clark’s completion). We adopt it.

{Γθ −→ Cθ | θ ∈ CSU(s, t)}
eqL

Γ, s = t −→ C

s =βη t
eqR

Γ −→ s = t

12

Mini-ML: Encoding 4/4

• This corresponds to the following PID (note HOAS):

fun E ⇓ fun E
4
= >

(E1 @ E2)⇓V 4
= ∃E′ : E1 ⇓ fun E′ ∧ (E′ E2)⇓V

fix E ⇓V 4
= E (fix E)⇓V

• defR provides Prolog-like computations:

defR−→ fun λy. (fix λx. fun λy. x)⇓ fun λy. (fix λx. fun λy. x)
defR−→ fix (λx. fun λy. x)⇓ fun (λy.fix λx. fun λy. (fix λx. fun λy. x))

• defL provides case analysis:

defR> −→ fun E = fun E
defL

fun E ⇓V −→ V = fun E

13

(Co)Induction in FOλ∆IN

• To prove anything interesting, need some form of induction.
In [McDowell’97], only induction on natural numbers:

Γ −→ nat z natR Γ −→ nat I
Γ −→ nat s I natR

−→ D z D j −→ D (s j) D I,Γ −→ C
nat I,Γ −→ C natL

• Introduce counters in definitions, derive and use complete
induction (doable but clunky):

fix E ⇓(s N) V
4
= E (fix E)⇓N V . . .

• But what about coinductive predicates? Inductive encoding
works only with co-continuity, need direct approach.

(E1@E2) ⇑ 4
= E1 ⇑ ∨∃E′ : E1 ⇓ fun E′ ∧ (E′ E2) ⇑

fix E ⇑ 4
= E (fix E) ⇑

14

Linc 1/5

• For convenience, we define predicate with a single
(disjunctive) body, where pattern matching is a constraint
ex: nat x has body (x = z) ∨ ∃y.(x = s y) ∧ nat y. For this
talk, assume also no mutual recursion.

• Inductive predicates ∀x̄.p x̄ µ
= B, holding in every least

fixed point:

I t̄,Γ −→ C B[I] x̄ −→ I x̄
IL

p t̄,Γ −→ C
Γ −→ B t̄ IR
Γ −→ p t̄

where I is the Invariant predicate, x̄ fresh eigenvariables
and B[I] is B where every occurrence of p is replaced by I.

• Note: the old natL rule is now derivable via the invariant
I = λx.[(x = z) ∨ ∃y.(x = s y)] ∧D x. In general, defL is
derivable via IL.

15

Linc 2/5

• Easiest example in the book: value soundness
e⇓ v −→ value v. Let I = λxy . value y.

I e v −→ C B[I] xe xv −→ I xe xv IL
e⇓ v −→ C

• Let C be value v, with the definition: value (fun E)
µ
= >.

• Invariant implies conclusion value v −→ value v. Inductive
step(s):

1. xe = fun E = xv −→ value xv. IR on value (fun E).

2. xe = E1 @ E2 ∧ xv = V ∧ . . . I (E′ E2) V −→ value xv

3. xe = fix F ∧ xv = V ∧ I (F (fix F)) V −→ value xv.

16

Linc 3/5

• Conductive predicates ∀x̄.p x̄ ν
= B, holding in every

greatest fixed point. S is the purported Simulation:

B t̄,Γ −→ C
p t̄,Γ −→ C

CIL Γ −→ S t̄ S x̄ −→ B[S] x̄
Γ −→ p t̄

CIR

• Proviso lvl(S) ≤ lvl(p). Note: the defR rule is derivable.

• Example: let h ≡ fix (λx. x @ x). It holds −→ h ⇑. Let S be
λy. y = h ∨ y = h @ h. LHS is
−→ h = h ∨ h = h @ h. RHS yields two subgoals
−→ h @ h = E1 @ E2 ∧ (E1 = h @ h ∨ E1 = h) and
−→ ∃F. h = fix F ∧ (F (fix F) = h @ h ∨ F (fix F) = h)

• Regular predicates ∀x̄.p x̄ 4= B , true in every fixed point

17

Linc 4/5

• Without restrictions, PID may be inconsistent – cut not
eliminable – even before (co)inductive rules, see p

4
= p ⊃⊥.

• Give predicates and formulas a level and require definitions
to be stratified. This brings back monotonicity at the level
of definitions, but supports HOAS. Need to go two-level to
accommodate reasoning with non-stratifiable hypothetical
judgments such as typing [McDowell et al’02, Momigliano
et al ’03]. Similarly with Twelf and its meta-logic Mω.

• Use dependency graph to avoid a predicate to be
(mutually) defined both inductively and co-inductively.

• Cut-elimination based on adaptation of Tait-style
reducibility, generalizes McDowell’s proof for FOλ∆IN.

18

Linc: Cut Elimination 5/5

• Well-order on proofs induced by “local” cut reduction,
proof by induction on the length of proof of the rightmost
derivation, and on the reducibility of the left. Coinduction
may need notion of “coreducibility”.

• Given Aȳ
µ
= B[A] ȳ

Π1
∆ −→ B[A] t̄

∆ −→ A t̄
IR

ΠB
B[S] ȳ −→ S ȳ

Π
S t̄,Γ −→ C

A t̄,Γ −→ C
IL

∆,Γ −→ C
mc

.

• This reduces to

Π′1
∆ −→ B[S] t̄

ΠB[t̄/ȳ]
B[S] t̄ −→ S t̄

∆ −→ S t̄
mc Π

S t̄,Γ −→ C
∆,Γ −→ C

mc

19

Implementation 1/3

• Hybrid [Ambler et al’02], a package on top of Isabelle/HOL.

• Generalizing [A. Gordon’94], a deep encoding in
Isabelle/HOL of a λ-calculus which provides a form of
logical framework where the syntax of an object level logic
can be adequately represented by HOAS.

• Supports tactical theorem proving, (co)induction, but
definitional, so consistent within a classical type theory.
This gives access to all the features of Isabelle HOL, in
particular (co)induction.

• Bottom line: ‘Hybrid syntax’ provides the user with a form
of HOAS, but this is syntactic sugar (more properly a
definition) for an underlying de Bruijn representation.

20

Implementation 2/3

• Start with a de Bruijn data-type for the the untyped λ
calculus with constants:

CON :: con⇒ expr VAR :: nat ⇒ expr

$$:: expr ⇒ expr ⇒ expr Abs :: expr ⇒ expr

• From that define a function LAM :: (expr ⇒ expr)⇒ expr,

• a predicate proper : : expr ⇒ bool to restrict to well-formed
first order terms and a predicate
abstr : : (expr ⇒ expr)⇒ bool to rule out exotic λ-term.

• Example: ΛV1.ΛV2. V1 V2 is coded as
LAM v1. (LAM v2. (v1$$v2)) and reduced by rewriting to the
de Bruijn term Abs (Abs (Bnd 1 $$ Bnd 0)).

21

Implementation 3/3

• Since stratified PID are monotonic, implement them as a
Isabelle HOL(co)inductive definition (abstr annotations to
isolate the parametric function space, to be internalized):

coinductive divrg :: exp ⇒ bool

[[divrg E1]] =⇒ divrg (E1$E2)

[[E1 >>> fun E′; abstr E′; divrg (E′ E2)]] =⇒ divrg (E1$E2) . . .

• Prove (by comprehension) the set-theoretic soundness of
the CIR rule, by Isabelle HOL’s co-induction, where Bdiv is
the completion body of the definition, abstracted over S:

Goal ”(∃S. S t ∧ (∀y. S y → Bdiv S y))→ divrg t”;

• Use the latter to prove:

Goal ”divrg (fix x. x $ x)”;

22

Demo 1/2

B_div == (%S x. (EX E1 E2. x = E1 $ E2 & (S E1) |

(EX E E1 E2. x = E1 $ E2 & E1 >>> lam x. E x & abstr E & S (E E2)) |

(EX E. x = fix E & abstr E & S(E (fix E)))))"

Goal "divrg (fix x. x $ x)";

br co_div 1;

1. EX S. S (fix x. x $ x) & (ALL y. S y --> B_div S y)

by(res_inst_tac [("x"," (%s . s = (h $ h) | s = h)")] exI 1);

1. (fix x. x $ x = h $ h | fix x. x $ x = h) &

(ALL y. y = h $ h | y = h --> B_div (%s. s = h $ h | s = h) y)

br conjI 1;

1. fix x. x $ x = h $ h | fix x. x $ x = h

2. ALL y. y = h $ h | y = h --> B_div (%s. s = h $ h | s = h) y

by(simp_tac(simpset() addsimps [h_def])1);

23

Demo 2/2

1. ALL y. y = h $ h | y = h --> B_div (%s. s = h $ h | s = h) y

bw B_div_def; by(strip_tac 1);

1. !!y. y = h $ h | y = h (* first disjunct *)

==> EX e1 e2. y = e1 $ e2 & (e1 = h $ h | e1 = h) |

(EX E e1 e2. y = e1 $ e2 &

e1 >>> bLam E & abstr E & (E e2 = h $ h | E e2 = h)) |

(EX E. y = fix E & abstr E & (E (fix E) = h $ h | E (fix E) = h))

be disjE 1; by(fast_tac(HOL_cs addss (simpset() addsimps [h_def])) 1);

1. !!y. y = h

==> ...

(EX E. y = fix E & abstr E & (E (fix E) = h $ h | E (fix E) = h))

bw h_def;by(blast_tac(HOL_cs addIs [abstr_xx])1);

...

Level 10

divrg (fix x. x $ x)

No subgoals!

24

Circular Proofs 1/3

• Using CIR requires the invention of a simulation: An
alternative lazy way is to drop the rule and do proof search
and circularity checking (guarded induction), as suggested
by Coquand and implemented in CCCoInd.

• Derivations (with defLdefR) may include cycles. The
derivation of a sequent can be closed if there is a leaf which
is an instance of another sequent in the derivation graph.

• Circular branch has to be guarded, i.e., there has to be an
application of defR in the branch (up to permutation).
Equivalent in sequents to productivity in type theory.

• Restriction: circularity across cut rule must be restricted.
Otherwise we lose cut-elimination.

25

Circular Proofs 2/3

• Divergence (as before), for h ≡ fix (λx. x @ x):

−→ h ⇑
defR−→ h @ h ⇑

defR−→ h ⇑

• Applicative simulation [Abramski’90]:

R ≤ S ν
= ∀T. R⇓ fun T → (∃U.S ⇓ fun U ∧ ∀p. (T p) ≤ (U p)

• Transitivity m1 ≤ m2,m2 ≤ m3 −→ m1 ≤ m3. Two defL and
one of defR and quantifier eliminations (on the right): get
(m1 p) ≤ (m2 p), (m2 p) ≤ (f3 p) −→ (m1 p) ≤ (f3 p) and
close.

• S = λ xy. ∃w . x ≤ w ∧ w ≤ y constructed via proof-search.

26

Circular Proofs 3/3

• Cut free circular proofs not complete for infinite behavior.

For example take simulation in CCS:

sim P Q
4
= ∀A∀P ′.P

A
−−→ P ′ ⊃ ∃Q′.Q

A
−−→ Q′ ∧ sim P ′ Q′

• sim P Q, where P = µx.(a.x) and Q = µx.((a.x | a.x)).

P
a−→ P

a−→ P
a−→ . . .

Q
a−→ (Q | a.Q)

a−→ (Q |Q)
a−→ ((Q | a.Q) |Q)

a−→ . . .

but there is no cut free circular proof of it.

• But you can prove it via CIR with the simulation

S := λPλQ.(P = µx.a.x) ∧ ∃Q′.Q
a
−−→ Q |Q′.

27

Extensions: ∇ 1/3

• Eigenvariables have two roles: freshness and site for
instantiation (inversion and cut-elim). Mapping object-level
abstraction to meta-level universal quantif. blurs them.

• Example: νxy. [x = y] x̄z.0 has no transitions.
νλx. λy. x̄z.0 A−→⊥ true iff there are two distinct names.

• Introduce another layer of abstraction into sequent, writing
signatures explicitly in the sequent, and to each formula
there is an associated local signature:

Σ : σ1 . B1, . . . , σn . Bn −→ σ . C

where Σ is the global eigenvariable which has scope over
the entire sequent and σi is the local variables. An intuitive
reading of x, y . Bxy is λxλy.Bxy. Local variables cannot be
instantiated.

28

Extensions: ∇ 2/3

• A new quantifier ∇ manipulates the local signatures.

Σ, σ ` t : τ Σ : σ . B[t/x],Γ −→ C
Σ : σ . ∀τx.B,Γ −→ C ∀L

Σ, h : Γ −→ σ . B[(h σ)/x]
Σ : Γ −→ σ . ∀x.B ∀R

Σ, h : σ . B[(h σ)/x],Γ −→ C
Σ : σ . ∃x.B,Γ −→ C ∃L

Σ, σ ` t : τ Σ : Γ −→ σ . B[t/x]
Σ : Γ −→ σ . ∃τx.B ∃R

Σ : (σ, y) . B[y/x],Γ −→ C
Σ : σ .∇x.B,Γ −→ C ∇L

Σ : Γ −→ (σ, y) . B[y/x]
Σ : Γ −→ σ .∇x.B ∇R

• The interaction (scoping) between global and local

variables in ∀- and ∃-rules. Achieved via raising.

29

Extensions: ∇ 3/3

• The name-restriction in π-calculus transition is now interpreted as ∇.

νP
α
−−→ ν Q

4
= ∇x.(P

α
−−→ Q)

• Let Σ = {x, z, α,Q}. We can now prove the judgment in the previous
example:

Σ : w . ([x = w](x̄z.0)
α
−−→ Q) −→ ⊥

defL

Σ : . .∇y.([x = y](x̄z.0)
α
−−→ Q) −→ ⊥

∇L

Σ : . . (νλy. [x = y](x̄z.0)
α
−−→ Q) −→ ⊥

defL

Σ :−→ . . (νλy. [x = y](x̄z.0)
α
−−→ Q) ⊃ ⊥

⊃ R

• In applying defL rule, the local signature is mapped to λ-abstraction.
The proof above relies on the failure of the unification λw.x = λw.w.

30

Conclusions

• Partial inductive definitions give an independent account of
introduction and elimination rules for predicates.

• They allow HOAS at the syntax level, which is not required
to be a data-type, orthogonally from HOL.

• Stratification is sufficient to ensure cut-elimination, while
another layer (explicitly reference provability) is needed to
reason about non-stratifiable hypo-judgments.

• (Co)Induction rules greatly adds to specification power.

• Circular proofs are a promising way to lazily search for
(co)inductive proofs.

31

Future Work 1/2

• Take circular proofs seriously. Show soundness w.r.t. the

CIR rule. Study restrictions that allow certain cuts.

Investigate circular (well-founded) proofs in the inductive

setting [Sprenger & Dam’03] and the relation with fixed

point logics.

• Play a similar game (wrt coinduction) with LF and Twelf :

1. coverage and guardedness checking at the LF level

2. add ν to the meta-logic Mω.

• Look at Mendler-style (co)induction, also to ensure

guardedness as-you-go [Gimemenez’98].

32

Future Work 2/2

• Semantical considerations: (co)-induction rules are sound
wrt higher order logic. Should be complete too.

• Which semantics for circular proofs?

• Implementation:

1. Use Hybrid, which is currently been extended in a way
which could support ∇ [Ambler et al’03].

2. A dedicated system for (normalized) PID’s, on top of an
interactive proof assistant (Isabelle, Coq).

• Experiment with one big case-study, say congruence of
bisimulation in the higher-order π-calculus.

33

That’s all, folks!

34

