
Towards Certification of Resource Consumption

Alberto Momigliano and Lennart Beringer
Laboratory for Foundations of Computer Science

University of Edinburgh

Work carried out in the

EU-project ”Mobile Resource Guarantees” (MRG), IST-2001-33149

Reasoning Seminar, November, 5th, 2004

0-0

MRG: PCC infrastructure for resource-related properties

• Applications with resource considerations: portable devices (phones, PDA’s,. . .),

Smartcards, embedded processors (car electronics,. . .), satellites, GRID services,. . .

• Example resources: memory (heap & stack), time, energy, network bandwidth, parameter

values of system calls

• Approach (certifying compilation): translation from user language into machine language

derives independently verifiable certificates

• MRG complements security usages of PCC (memory safety,. . .)

This talk: brief overview, short demo, “how does it work”?

MRG architecture

JVMLJVML

Grail
Grail

CertificateCertificate

Camelot Type system

Network

Contraction

Certificate Checker

Expansion

Certifying Compiler

JVM

Resource Policy
OK?

Works because of reversible expansion of Grail into JVML subset

Camelot
Camelot: ML-like first-order functional language (polymorphism, no references)

• Example program: insertion sort:

type iList = !Nil | Cons of int * iList

let ins a l =

match l with Nil -> Cons(a,Nil)

| Cons(x,t)@_ -> if a < x then Cons(a,Cons(x,t))

else Cons(x, ins a t)

let sort l = match l with Nil -> Nil | Cons(a,t)@_ -> ins a (sort t)

• Notation @_indicates destructive pattern match

• Whole program compilation where each Camelot function yields one JVM method

• Compilation includes an explicit memory manager (freelist)

Wish to certify memory consumption of compiled output.

Program analysis, certification & proof checking

• Memory consumption inferred from program annotations using a type system

• Result: ins consumes one memory cell, independent from actual input), sort does not

consume any memory (in-place)

• In general: memory consumption expressed relative to size of input

• PCC-certificate: encoding of the result of the type inference in a program logic

• Certificate bundled with program for transmission

• JVM at consumer side uses modified class loader (security manager) that checks

certificate (no type inference, just proof checking in Isabelle) before executing program

Demo: what you are going to see

• Example: insertion sort

• Valid method specification: in-place-property

• Execution of MRGjava: compilation to JVM, certificate checking succeeds, execution of

program

• Invalid specification: claims that one memory cell is gained

• Execution of MRGjava: certificate checking fails

Example

List reversal (obtained from Camelot code, pretty printed)

method LST.rev(l, acc) = if l.TAG = 0 then return acc

else h = l.HD; t = l.TL;

l.TAG := 1; l.HD := h;

l.TL := acc; return LST.rev(t,l)

Specification (no functional correctness, just resources):

ST LST.rev z = λ E h h ′ v p. ∀ n a X m b Y. (E z = [Ref a, Ref b] ∧ h, a |=X n ∧ h, b |=Y m ∧ X ∩ Y = ∅)
−→ |dom(h)| = |dom(h ′)| ∧ p = 〈(29n + 13) 0 (n + 1) (n + 1)〉

Verification doable but cumbersome (∃-instantiations, case splits,. . .)

Derived logics: linear heap consumption

• Idea: Develop specialised logics whose proof rules are related to type systems at high

and intermediate language level

• Exploit structure of Camelot compilation and analysis

• Certificate generation largely done by type inference

• LRPP: Interpret judgements of Hofmann/Jost type system by representing the soundness

statement in the program logic, i.e. all specifications are of the same restricted form

• “Certificate”: method specifications, verification of bodies fully automated, syntax-directed,

with simple side conditions

• Examples: insertion sort, heap sort etc

Future/current work

• Generalise existing system of derived assertions (sharing, usage-aspects, separation),

and evaluate on bigger examples

• Extract stand-alone proof checker

• Derive specialised logics for other resources: frame stack

• Generalise resource component in core logic: limits and separation conditions on method

parameters

Conclusion

• Presented expressive program logic for low-level language

• Single assertion style, cut rules for mutual recursion and parameter adaptation

• Chain of abstractions: operational semantics → general program logic → derived

specialised logics with automation

• Development backed up by implementation in Isabelle/HOL

• Sweet spot in debate “Classic vs. Foundational” PCC:

• Classic: extract stand-alone proof checker

• Foundational: unfold to core logic or operational semantics

; Proof negotiation

How does it work?
Existing approaches:

• Classical PCC: trusted special-purpose proof system for proving light-weight properties of

machine code (memory safety)

• Foundational PCC: operational model (processor) formalised in general-pupose logic,

special-purpose logic derived from this model, again in general-purpose theorem prover

MRG:

• Formalise instrumented operational semantics

• Use a general-purpose program logic (sound, complete & expressive, little automation)

• Derive special logics (interpreted type systems) in theorem prover

Grail: Characteristics

• Combine OO-aspects of bytecode (fields, methods) with (impure) low-level functional

language

• Extends Appel-Kelsey-correspondence to machine level

• Functional view: ANF-style + further syntactic restrictions

• Imperative view: easily convertible into various VM formats

• registers = variables, jumps = tail-calls

• Coincidence between functional and imperative views makes conversion reversible

• Emitted bytecode is highly structured (Leroy’s conditions)

Formalisation of Grail
• Named syntax (no HOAS)

datatype expr =

Int int

| Primop (int => int) name name

| New cname (fldname name) list

| GetF name fldname

| PutF name fldname name

| InvokeStatic cname mname ARGTYPE

| Let name expr expr

| Ifg name expr expr

| Call funame

• Program encoded using global tables (functions and methods)

• Impure functional semantics based on (finite) maps:

env = name => val

heap = locn |->f cname

fldname => locn => val

cname => fldname => ref

Grail: resource-instrumented operational semantics

Based on (impure) functional view:

E ` h, e ⇓ (h ′, v, p)

Resource component P models costs, and can be instantiated to instruction counters

corresponding to executed JVM instructions, invocation depth, satisfaction of parameter value

policies and other observations

E ` h, e1 ⇓ (h1, w, p) w 6= ⊥ E〈x := w〉 ` h1, e2 ⇓ (h2, v, q)

E ` h, let x = e1 in e2 ⇓ (h2, v,P let (x, p, q))
(LET)

E〈x〉 = Ref l

E ` h, x.t ⇓ (h, h(l).t,Pgetf (x, t))
(GETF)

where Pgetf (x, t) = 〈2 0 0 0〉 or. . .

Program logic I

• General reappraisal of program (Hoare) logics: embeddings in theorem prover (Kleymann,

Nipkow), Separation logics (Reynolds, O’Hearn), Java verification (Jacobs, de Boer,

vonOheimb)

• Embedding a la Nipkow: deep embedding of language, shallow embedding of assertions,

with soundness and (relative) completeness formally proven in theorem prover

• Pragmatic issue: meta-theoretic investigation vs program verification (automation). In

MRG-PCC both issues are important!

• Specifications A are predicates over semantic components evaluation environment (local

variables), initial & final heap, result value, and resource component

• No auxiliary variables (usage of post-heap inspired by hooked variables in VDM)

• Judgements interpreted as partial “correctness” statements: validity |= e : A defined as

∀ E h h ′ v p. (E ` h, e ⇓ (h ′, v, p) −→ A E h h ′ v p).

• Termination considered orthogonal

Program logic III: proof rules

Γ � e1 : A1 Γ � e2 : A2

Γ � let x = e1 in e2 : λ E h h ′ v p.∃ p1 p2 h1 w. (A1 E h h1 w p1) ∧ w 6= ⊥ ∧

(A2 (E〈x := w〉) h1 h ′ v p2) ∧

p = P let (x, p, q)

(VLET)

Γ � x.t : λ E h h ′ v p.∃ l. E〈x〉 = Ref l ∧ h ′ = h ∧

v = h ′(l).t ∧ p = Pgetf (x, t)

(VGETF)

• Structural rules: context lookup and rule of consequence

• Admissable rules (derived in Isabelle): cut

• Context Γ stores recursive assumptions. ; proof system suffices for mutual recursion

and parameter adaptation of method calls

Program logic IV: soundness & completeness

Follows earlier work by Kleymann, Nipkow, and Hofmann.

• Soundness proven as usual, by relativised validity and induction on height of derivations

• Shallow embedding: avoids definition of language and logic of assertions

• “Relative” completeness: in rule of consequence, the implication only needs to hold rather

than being derivable

• Implementation in theorem prover using shallow embedding: use the meta-logical

implication. ; incompleteness of meta-logic (HOL) is inherited by program logic

• Completeness proven by defining strongest specifications, a specification table ŜT

associating to each function call / method invocation its strongest specification, proving

that the corresponding context is good w.r.t. ŜT , and applying (a variant of) the cut rule

and MUTREC.

Program logic V: example specification (insertion sort)

insSpec ≡ MS List ins [a1, a2] =

λ E h h ′ v p .∀ i r n X .

(E〈a1〉 = i ∧ E〈a2〉 = Ref r ∧ h, r |=X n

−→ |dom(h)| + 1 = |dom(h ′)| ∧ p ≤ 〈(An + B) (Cn + D) (En + F) (Gn + H)〉)

sortSpec ≡ MS List sort [a] =

λ E h h ′ v p .∀ i r n X .

(E〈a〉 = Ref r ∧ h, r |=X n −→ |dom(h)| = |dom(h ′)| ∧ p ≤ . . .)

Lemma: insSpec ∧ sortSpec −→ � List � sort([xs]) : MS List sort [xs]

• h, r |=X n defined inductively, introduces case-splits during verification

• proof rules contain existentials over intermediate heaps and instrumentations

• ; automatic proof search impractical even after applying all proof rules (VCG):50-100

Isar-commands

• ; certificate generation by compiler difficult

• Certificate Generation: exploit program structure and compiler analysis by proving

properties that are more closely related to the type system

Insertion sort: compiler output

method static public List ins (int a, D l) = ...D � make(a, null)...

method static public List sort (D l) =

if l = null then null

else let h = l .HD in let t = l .TL in let = D � free(l) in

let l = List � sort (t) in List � ins (h, l)

. . . plus code for memory management and runtime environment methods

• D � make(. . .): takes object from freelist, or calls new

• D � free(x): inserts object into freelist

• D � main (l): constructs initial freelist, calls List � sort (s2i(l))

We wish to verify that

• any memory allocation throughout an invocation of main is performed during the initial

construction of the freelist, and in particular that

• during the execution of List � sort (l), all invocations of make are executed on a

non-empty freelist, i.e. no call to new is performed

Type-based analysis of Camelot programs

Type system by Hofmann and Jost (POPL 2003):

• Input: program containing a function start : string list -> unit

Output: a linear function s such that start (l) will not call new when evaluated in a heap

h where

– l points in h to a linear list of some length n

– the freelist which forms a part of h is well-formed

– the freelist does not overlap with l

– the freelist has length not less than s(n)

• How does this work?

– Annotate types with freelist annotations for each constructor: iTree(n, m)

– Judgements Γ, n ` e : T,m include information about initial and final size of freelist

– Express final size of freelist as function of the size of the output

– Complement this type system with an arbitrary method for preventing deallocation of

live cells (linear typing, usage aspects, layered sharing,. . .)

What is certificate generation?

• Verify the soundness of the type system w.r.t. the Camelot compilation by

– interpreting the judgements in the program logic, using basic predicates about

freelistrepresentation and length, disjointness conditions of data-structures, footprint of

program fragments

– formally proving (in Isabelle/HOL) derived proof rules in the base logic

• Formulate the rules such that automated verification is possible

– simple side conditions, no ∃-instantiations. . .

– provided that results of the compile-time analysis are communicated as method-level

specifications (invariants)

Proof rules

• Chose linearity condition for eliminating deallocation of live cells

; proof rules are expressed at a level where program variables occur (affinely) linear

• Linear context implemented in two components

• Example rule (Let)

G � e1 : JU1, n, [Γ] I S, kK G � e2 : JU2, k, [Γ, x : S] I T, mK
G � let x = e1 in e2 : JU1 ∪ (U2 \ {x}), n, [Γ] I T, mK

U1 ∩ (U2 \ {x}) = ∅

• Atomic rules for (destructive and non-destructive) match-statements and for invocations of

make

• Example rule (ListMatchD)

Γ(x) = L(k) G � e : JU, n + k + 1, [Γ, h : I, t : L(k)] I T, mK x /∈ U ∪ {h, t}

G � let h = x.HD in let t = x.TL in D � free(x) ; e : J(U \ {h, t}) ∪ {x}, n, [Γ] I T, mK

• Only the verification of the wrapper (uniform for all programs) needs to unfold the

interpretation into the core logic

Certificates and automated verification
Producer-generated certificate:

• Content: method-level specifications in derived-assertions form

• Representation: Isabelle/HOL script that invokes a standard tactic prove

Consumer side:

• Tactic prove that

– invokes derived proof rules (syntax-directed) and

– discharges side conditions (set inclusions, arithmetic (in-)equalities).

– Methods verified once, combination for mutual recursion via cut rule and parameter

adaptation

– Functions (basic blocks) verified once, via optimised treatment of merge points

that combines imperative (dominator property) and functional (function parameters)

viewpoints

– Currently tested on 11 methods (append, flatten, insertion sort & heap sort)

– Runtime (inside Isabelle environment) between 2secs and 30secs

