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MRG: PCC infrastructure for resource-related properties

• Applications with resource considerations: portable devices (phones, PDA’s,. . . ),

Smartcards, embedded processors (car electronics,. . . ), satellites, GRID services,. . .

• Example resources: memory (heap & stack), time, energy, network bandwidth, parameter

values of system calls

• Approach (certifying compilation): translation from user language into machine language

derives independently verifiable certificates

• MRG complements security usages of PCC (memory safety,. . . )

This talk: brief overview, short demo, “how does it work”?



MRG architecture
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Works because of reversible expansion of Grail into JVML subset



Camelot
Camelot: ML-like first-order functional language (polymorphism, no references)

• Example program: insertion sort:

type iList = !Nil | Cons of int * iList

let ins a l =

match l with Nil -> Cons(a,Nil)

| Cons(x,t)@_ -> if a < x then Cons(a,Cons(x,t))

else Cons(x, ins a t)

let sort l = match l with Nil -> Nil | Cons(a,t)@_ -> ins a (sort t)

• Notation @_indicates destructive pattern match

• Whole program compilation where each Camelot function yields one JVM method

• Compilation includes an explicit memory manager (freelist)

Wish to certify memory consumption of compiled output.



Program analysis, certification & proof checking

• Memory consumption inferred from program annotations using a type system

• Result: ins consumes one memory cell, independent from actual input), sort does not

consume any memory (in-place)

• In general: memory consumption expressed relative to size of input

• PCC-certificate: encoding of the result of the type inference in a program logic

• Certificate bundled with program for transmission

• JVM at consumer side uses modified class loader (security manager) that checks

certificate (no type inference, just proof checking in Isabelle) before executing program



Demo: what you are going to see

• Example: insertion sort

• Valid method specification: in-place-property

• Execution of MRGjava: compilation to JVM, certificate checking succeeds, execution of

program

• Invalid specification: claims that one memory cell is gained

• Execution of MRGjava: certificate checking fails



Example

List reversal (obtained from Camelot code, pretty printed)

method LST.rev(l, acc) = if l.TAG = 0 then return acc

else h = l.HD; t = l.TL;

l.TAG := 1; l.HD := h;

l.TL := acc; return LST.rev(t,l)

Specification (no functional correctness, just resources):

ST LST.rev z = λ E h h ′ v p. ∀ n a X m b Y. (E z = [Ref a, Ref b] ∧ h, a |=X n ∧ h, b |=Y m ∧ X ∩ Y = ∅)
−→ |dom(h)| = |dom(h ′)| ∧ p = 〈(29n + 13) 0 (n + 1) (n + 1)〉


Verification doable but cumbersome (∃-instantiations, case splits,. . . )



Derived logics: linear heap consumption

• Idea: Develop specialised logics whose proof rules are related to type systems at high

and intermediate language level

• Exploit structure of Camelot compilation and analysis

• Certificate generation largely done by type inference

• LRPP: Interpret judgements of Hofmann/Jost type system by representing the soundness

statement in the program logic, i.e. all specifications are of the same restricted form

• “Certificate”: method specifications, verification of bodies fully automated, syntax-directed,

with simple side conditions

• Examples: insertion sort, heap sort etc



Future/current work

• Generalise existing system of derived assertions (sharing, usage-aspects, separation),

and evaluate on bigger examples

• Extract stand-alone proof checker

• Derive specialised logics for other resources: frame stack

• Generalise resource component in core logic: limits and separation conditions on method

parameters



Conclusion

• Presented expressive program logic for low-level language

• Single assertion style, cut rules for mutual recursion and parameter adaptation

• Chain of abstractions: operational semantics → general program logic → derived

specialised logics with automation

• Development backed up by implementation in Isabelle/HOL

• Sweet spot in debate “Classic vs. Foundational” PCC:

• Classic: extract stand-alone proof checker

• Foundational: unfold to core logic or operational semantics

; Proof negotiation



How does it work?
Existing approaches:

• Classical PCC: trusted special-purpose proof system for proving light-weight properties of

machine code (memory safety)

• Foundational PCC: operational model (processor) formalised in general-pupose logic,

special-purpose logic derived from this model, again in general-purpose theorem prover

MRG:

• Formalise instrumented operational semantics

• Use a general-purpose program logic (sound, complete & expressive, little automation)

• Derive special logics (interpreted type systems) in theorem prover



Grail: Characteristics

• Combine OO-aspects of bytecode (fields, methods) with (impure) low-level functional

language

• Extends Appel-Kelsey-correspondence to machine level

• Functional view: ANF-style + further syntactic restrictions

• Imperative view: easily convertible into various VM formats

• registers = variables, jumps = tail-calls

• Coincidence between functional and imperative views makes conversion reversible

• Emitted bytecode is highly structured (Leroy’s conditions)



Formalisation of Grail
• Named syntax (no HOAS)

datatype expr =

Int int

| Primop (int => int) name name

| New cname (fldname name) list

| GetF name fldname

| PutF name fldname name

| InvokeStatic cname mname ARGTYPE

| Let name expr expr

| Ifg name expr expr

| Call funame

• Program encoded using global tables (functions and methods)

• Impure functional semantics based on (finite) maps:

env = name => val

heap = locn |->f cname

fldname => locn => val

cname => fldname => ref



Grail: resource-instrumented operational semantics

Based on (impure) functional view:

E ` h, e ⇓ (h ′, v, p)

Resource component P models costs, and can be instantiated to instruction counters

corresponding to executed JVM instructions, invocation depth, satisfaction of parameter value

policies and other observations

E ` h, e1 ⇓ (h1, w, p) w 6= ⊥ E〈x := w〉 ` h1, e2 ⇓ (h2, v, q)

E ` h, let x = e1 in e2 ⇓ (h2, v,P let (x, p, q))
(LET)

E〈x〉 = Ref l

E ` h, x.t ⇓ (h, h(l).t,Pgetf (x, t))
(GETF)

where Pgetf (x, t) = 〈2 0 0 0〉 or. . .



Program logic I

• General reappraisal of program (Hoare) logics: embeddings in theorem prover (Kleymann,

Nipkow), Separation logics (Reynolds, O’Hearn), Java verification (Jacobs, de Boer,

vonOheimb)

• Embedding a la Nipkow: deep embedding of language, shallow embedding of assertions,

with soundness and (relative) completeness formally proven in theorem prover

• Pragmatic issue: meta-theoretic investigation vs program verification (automation). In

MRG-PCC both issues are important!

• Specifications A are predicates over semantic components evaluation environment (local

variables), initial & final heap, result value, and resource component

• No auxiliary variables (usage of post-heap inspired by hooked variables in VDM)

• Judgements interpreted as partial “correctness” statements: validity |= e : A defined as

∀ E h h ′ v p. (E ` h, e ⇓ (h ′, v, p) −→ A E h h ′ v p).

• Termination considered orthogonal



Program logic III: proof rules

Γ � e1 : A1 Γ � e2 : A2

Γ � let x = e1 in e2 : λ E h h ′ v p.∃ p1 p2 h1 w. (A1 E h h1 w p1) ∧ w 6= ⊥ ∧

(A2 (E〈x := w〉) h1 h ′ v p2) ∧

p = P let (x, p, q)

(VLET)

Γ � x.t : λ E h h ′ v p.∃ l. E〈x〉 = Ref l ∧ h ′ = h ∧

v = h ′(l).t ∧ p = Pgetf (x, t)

(VGETF)

• Structural rules: context lookup and rule of consequence

• Admissable rules (derived in Isabelle): cut

• Context Γ stores recursive assumptions. ; proof system suffices for mutual recursion

and parameter adaptation of method calls



Program logic IV: soundness & completeness

Follows earlier work by Kleymann, Nipkow, and Hofmann.

• Soundness proven as usual, by relativised validity and induction on height of derivations

• Shallow embedding: avoids definition of language and logic of assertions

• “Relative” completeness: in rule of consequence, the implication only needs to hold rather

than being derivable

• Implementation in theorem prover using shallow embedding: use the meta-logical

implication. ; incompleteness of meta-logic (HOL) is inherited by program logic

• Completeness proven by defining strongest specifications, a specification table ŜT

associating to each function call / method invocation its strongest specification, proving

that the corresponding context is good w.r.t. ŜT , and applying (a variant of) the cut rule

and MUTREC.



Program logic V: example specification (insertion sort)

insSpec ≡ MS List ins [a1, a2] =

λ E h h ′ v p .∀ i r n X .

(E〈a1〉 = i ∧ E〈a2〉 = Ref r ∧ h, r |=X n

−→ |dom(h)| + 1 = |dom(h ′)| ∧ p ≤ 〈(An + B) (Cn + D) (En + F) (Gn + H)〉)

sortSpec ≡ MS List sort [a] =

λ E h h ′ v p .∀ i r n X .

( E〈a〉 = Ref r ∧ h, r |=X n −→ |dom(h)| = |dom(h ′)| ∧ p ≤ . . .)

Lemma: insSpec ∧ sortSpec −→ � List � sort([xs]) : MS List sort [xs]

• h, r |=X n defined inductively, introduces case-splits during verification

• proof rules contain existentials over intermediate heaps and instrumentations

• ; automatic proof search impractical even after applying all proof rules (VCG):50-100

Isar-commands

• ; certificate generation by compiler difficult

• Certificate Generation: exploit program structure and compiler analysis by proving

properties that are more closely related to the type system



Insertion sort: compiler output

method static public List ins (int a, D l ) = ...D � make(a, null )...

method static public List sort (D l ) =

if l = null then null

else let h = l .HD in let t = l .TL in let = D � free(l ) in

let l = List � sort (t) in List � ins (h, l )

. . . plus code for memory management and runtime environment methods

• D � make(. . .): takes object from freelist, or calls new

• D � free(x): inserts object into freelist

• D � main (l): constructs initial freelist, calls List � sort (s2i(l))

We wish to verify that

• any memory allocation throughout an invocation of main is performed during the initial

construction of the freelist, and in particular that

• during the execution of List � sort (l), all invocations of make are executed on a

non-empty freelist, i.e. no call to new is performed



Type-based analysis of Camelot programs

Type system by Hofmann and Jost (POPL 2003):

• Input: program containing a function start : string list -> unit

Output: a linear function s such that start (l ) will not call new when evaluated in a heap

h where

– l points in h to a linear list of some length n

– the freelist which forms a part of h is well-formed

– the freelist does not overlap with l

– the freelist has length not less than s(n)

• How does this work?

– Annotate types with freelist annotations for each constructor: iTree(n, m)

– Judgements Γ, n ` e : T,m include information about initial and final size of freelist

– Express final size of freelist as function of the size of the output

– Complement this type system with an arbitrary method for preventing deallocation of

live cells (linear typing, usage aspects, layered sharing,. . . )



What is certificate generation?

• Verify the soundness of the type system w.r.t. the Camelot compilation by

– interpreting the judgements in the program logic, using basic predicates about

freelistrepresentation and length, disjointness conditions of data-structures, footprint of

program fragments

– formally proving (in Isabelle/HOL) derived proof rules in the base logic

• Formulate the rules such that automated verification is possible

– simple side conditions, no ∃-instantiations. . .

– provided that results of the compile-time analysis are communicated as method-level

specifications (invariants)



Proof rules

• Chose linearity condition for eliminating deallocation of live cells

; proof rules are expressed at a level where program variables occur (affinely) linear

• Linear context implemented in two components

• Example rule (Let)

G � e1 : JU1, n, [Γ ] I S, kK G � e2 : JU2, k, [Γ, x : S] I T, mK
G � let x = e1 in e2 : JU1 ∪ (U2 \ {x}), n, [Γ ] I T, mK

U1 ∩ (U2 \ {x}) = ∅

• Atomic rules for (destructive and non-destructive) match-statements and for invocations of

make

• Example rule (ListMatchD)

Γ(x) = L(k) G � e : JU, n + k + 1, [Γ, h : I, t : L(k)] I T, mK x /∈ U ∪ {h, t}

G � let h = x.HD in let t = x.TL in D � free(x) ; e : J(U \ {h, t}) ∪ {x}, n, [Γ ] I T, mK

• Only the verification of the wrapper (uniform for all programs) needs to unfold the

interpretation into the core logic



Certificates and automated verification
Producer-generated certificate:

• Content: method-level specifications in derived-assertions form

• Representation: Isabelle/HOL script that invokes a standard tactic prove

Consumer side:

• Tactic prove that

– invokes derived proof rules (syntax-directed) and

– discharges side conditions (set inclusions, arithmetic (in-)equalities).

– Methods verified once, combination for mutual recursion via cut rule and parameter

adaptation

– Functions (basic blocks) verified once, via optimised treatment of merge points

that combines imperative (dominator property) and functional (function parameters)

viewpoints

– Currently tested on 11 methods (append, flatten, insertion sort & heap sort)

– Runtime (inside Isabelle environment) between 2secs and 30secs


