
Benchmarks for mechanized meta-theory

A very personal and partial view

Alberto Momigliano

Dagstuhl, Oct 17, 2016

Loosely based on joint work with
Amy Felty and Brigitte Pientka

1

Disclaimer

These are half-baked thoughts cooked up on the plane, offered
here only to get a discussion going.

As Donald Rusmfeld used to say:
I There are things I know I don’t know.
I There are things I don’t know I don’t know .

So feel free to interject at any time.

2

Introduction

Benchmarks in theorem proving are useful, make the state of the
art progress or at least take stock

I automating FOL: TPTP [Sutcliffe, JAR 2009]
I higher-order extension: THF0 [Benzmüller et al, IJCAR 2008]
I SATLIB [Hoos & Stützle, SAT 2000]

The situation is less satisfactory for proof assistants, where
each system comes with its own set of examples/libraries, some
of them, as we well know, gigantic.

Not surprising, since we’re potentially addressing the whole
realm of maths

So, let’s pull the breaks and limit ourselves here to the
meta-theory of deductive systems, such as the ones in
Programming Languages theory

3

Benchmarks for PLT

Where do we stand?
I There are obvious differences with say TPLP, qualitative vs

quantitative comparisons

In a dark and stormy night of 2005 the POPLMark Challenge
appeared. And then?

I Lots of clever solutions (mostly incomplete) and to be fair
almost all using existing technology

I What kind of impact on the communities (PL and LF
researchers)?

4

Impact on PL research

More papers at POPL/ICFP come with at least a partial
formalization

I Sewell POPL 14: “Around 10% of submissions were completely
formalised, slightly more partially formalised”

Formalizations are evaluated
(http://www.artifact-eval.org/)

Can I have an hallelujah? Do we feel, as logical framework
people vindicated? Does it make a difference for acceptance (or
for the betterment of science)?

I Sewell again “acceptance rates for these were in line with those
for submissions as a whole.”

5

http://www.artifact-eval.org/

Impact on PL research

Significant success of courses such as “Software Foundations”
and to a lesser extent “Concrete Semantics” has been forming
new generations of PL people who consider proof assistants as
part of the tools belt (OK, it’s mostly Coq but still)

Huge success of projects where formalization is paramount such
as CompCert, Relaxed Concurrency Models, SEL4 etc.

Significant fundings for new ones (REMS, DeepSpec, SECOMP,
RustBelt)

6

Impact on logical frameworks
Did they evolve in the last 10 years as a response or on their
own accord? Feel free to disagree

I HOAS: Twelf stood still, Abella and Beluga were born out of
research (nabla and fixed point logics, CMTT) stemming from
the early 2000.

F to be generous, one could say that Abella 2.0’s generalization of
SL logic to higher-order owes to Pientka’s solution of
POPLMark 1.a

F They still are systems with very limited user-base outside
developers

I Nominal: the Isabelle package turned into Nominal2, but more
to have a better foundation for equivariance and to handle
multiple binders

F From the traffic on the mailing list, I’d say Nominal Isabelle has
gone quiet, although it has some power users not deterred by
the amount of low-level proofs one has still to handle

F Nominal techniques in Coq: I don’t follow HTT (too hard for
me), so don’t know

7

Coq’s masterplan for world domination

Is a monopoly in PL theory necessarily a bad thing? Dale Miller
is proposing a marketplace for proofs, is Coq the new Facebook
killing it in its infancy?

I Large user base
I Very active development

What about libraries for binders: are they used? Are people
happy with that?

I Locally nameless from the “Engineering Formal Metatheory”
paper

I Smolka’s Autosubst
I Hybrid (no, and I understandably so, until we make it usable by

others).

8

Is my obsession with binders justified?

Well, not just mine (three words: Harper, Honsell & Milner)

Binders are ubiquitous in PLT as well as obnoxious and need to
be handled simply, correctly and generically.

Still, a fair amount of formalization stays (apparently
successfully so) away from binders

“LEM does not care about binders, and we’re happy to keep it
that way” (Peter Sewell, my recollection 2014)

Not to name names (got it?), Leroy’s celebrated “Coinductive
big-step operational semantics” uses named not α-equivalent
syntax, non-capture avoiding substitutions, and so does Software
Foundations

They know what they’re doing. Maybe they’re right?

9

Benchmarks, the past

In the 90’s we were happy about proving type soundness for
PCF and friends – graduated to memory safety following PCC

Then we got to the Church-Rosser theorem – at least it deals
with open not closed terms

POPLMark, we already saw.

We (Amy Felty, Brigitte Pientka and myself) proposed some (by
design) simple benchmarks to stress systems for reasoning in a
context – see the appendix of this talk

For example, the equivalence of declarative and algorithmic
(α)-equality between lambda terms

10

Benchmarks, the present (and future?)

Many reliability and security properties of software depend upon
some notion of program equivalence:

I information-flow security (confinement, non-interference). More
in general:

I Bisimulation between (concurrent) systems
I full abstraction of program transformation within the same

language or from high to low level code. More in general:
I compiler correctness (too many advances to even mention),

most of them formalized

A unifying theme is the emerging, pervasive use of logical
relations, in particular step-indexed.

Seems to be prevailing over coinductive techniques, perhaps
because the latter are less supported in proof assistants (wrt
inductive ones, I mean)

11

Step-indexed logical relations

People have formalized them quite often by now, so what’s the
fuss?

Some do, yes, but it’s still challenging to do it right:
I The logical relation is not immediate to be accepted as an

inductive definition
I It involves a bit of arithmetic reasoning, and this may be

annoying for hyper-pure frameworks

“definitions and proofs have a tendency to become
cluttered with extra indices and even arithmetic, which
are really playing the role of construction lines”
(Benton and Hur, “Step-Indexing: The Good, the Bad
and the Ugly”)

12

LR, continued

An example: “A verified framework for higher-order uncurrying
optimization (Dargaye & Leroy, 2010)

I Interesting as it uses coinduction to encode cyclic closure (the
Milner-Tofte trick)

I But they use closure to avoid substitutions . . .
I it leaves open what to do with divergent source programs

Still a lot of work for a source language that is the untyped
λ-calculus with letrec

A paper such as “Typed Closure Conversion Preserves
Observational Equivalence” (Ahmed et al. 2008), where the
source language is system F with existential and recursive types
is way harder – and I haven’t look at the more recent stuff about
multi-language semantics

13

Other directions (please contribute)

Interesting mix of (co)induction and (co)recursion (e.g. papers
by Nakata-Uustalu among others)

Work on relational reasoning where polymorphism really is a plus
(Howe’s method in its generality and more in general Soren
Lassen’s thesis)

Benchmarks where object logics make heavy use of constraint
domains (see the Twelf/clp-examples directory, work by Ivan
Scagnetto and al. on LF + oracles)

14

One slide on ORBI

Benchmarks to be communicated need a language

Open challenge problem Repository for systems supporting
reasoning with BInders, https://github.com/pientka/ORBI/

I ORBI is designed to be:
F human-readable
F easily machine-parsable
F uniform
F flexible and extensible

I Currently oriented toward supporting the following systems:
F Twelf
F Beluga
F Abella
F Hybrid

without hopefully precluding other current and future systems
supporting HOAS, and eventually supporting other
representation techniques such as nominal.

15

https://github.com/pientka/ORBI/

Related Work

The above libraries for ATP

Very little about inductive problems

Ott and LEM as front-ends

LF as a common ground, e.g.,
I Logosphere (http://www.logosphere.org)
I SASyLF [Aldrich et al, 2008]
I Modularity in LF specifications [Rabe & Schürmann]

Why3 (http://why3.lri.fr), a software verification platform
providing a front-end to third-party theorem provers.

Environments for programming language descriptions
I PLT-Redex [Felleisen et al, 2009]
I The K framework [Roşu & Şerbănuţă, JLAP, 2010]

Handling and sharing of mathematical content

. . .

16

http://www.logosphere.org
http://why3.lri.fr

Appendix

Some benchmarks from:

Amy Felty, A.M. and Brigitte Pientka. Benchmarks for
Reasoning with Higher-Order Abstract Syntax Representations.
To appern in MSCS

17

Untyped Lambda Terms

Types A,B ::= α | arrA B
Terms M ::= x lam x .M | app M1 M2

Well-Formed Terms: (is tm M)

is tm x ∈ Γ
Γ ` is tm x

tmv
Γ, is tm x ` is tm M

Γ ` is tm (lam x .M)
tml

Γ ` is tm M1 Γ ` is tm M2

Γ ` is tm (app M1 M2)
tma

18

Equality of Lambda Terms

Algorithmic Equality: (aeq M N)

aeq x x ∈ Γ

Γ ` aeq x x
aev

Γ, is tm x ; aeq x x ` aeq M N

Γ ` aeq (lam x .M) (lam x .N)
ael

Γ ` aeq M1 N1 Γ ` aeq M2 N2

Γ ` aeq (app M1 M2) (app N1 N2)
aea

Contexts
Sx := is tm x Sxa := is tm x ; aeq x x

Note: Sxa is a basic linear extension of Sx .

19

Benchmark: Basic Linear Context Extension

Theorem (Admissibility of Reflexivity)
If Φxa ` is tm M then Φxa ` aeq M M .

Theorem (Admissibility of Symmetry and Transitivity)

1 If Φxa ` aeq M N then Φxa ` aeq N M .

2 If Φxa ` aeq M L and Φxa ` aeq L N then Φxa ` aeq M N .

20

The Polymorphic Lambda Calculus

Types A,B ::= α | arrA B | allα.A
Terms M ::= x | lam x .M | app M1 M2 |

tlamα.M | tapp M A

Rules Well-formedness of Types (is tp A)
Well-formedness of Terms (is tm M)
Equality of Types (atp A B)
Equality of Terms (aeq M N)

Context Schemas Sα ::= is tp α
Sαx ::= is tp α + is tm x
Satp ::= is tp α; atp α α
Saeq ::= is tp α; atp α α + is tm x ; aeq x x

21

Linear Context Extensions with Alternatives

Theorem (Admissibility of Reflexivity for Types)
If Φatp ` is tp A then Φatp ` atp A A.

Theorem (Admissibility of Reflexivity for Terms)
If Φaeq ` is tm M then Φaeq ` aeq M M .

22

Non-linear Context Extensions

Declarative Equality of the Untyped Lambda Calculus

. . .

Γ ` deq M M
der

Γ ` deq M L Γ ` deq L N

Γ ` deq M N
det

Γ ` deq N M

Γ ` deq M N
des

Context Schemas Sxd ::= is tm x ; deq x x
Sda ::= is tm x ; deq x x ; aeq x x

Theorem (Completeness)
If Φda ` deq M N then Φda ` aeq M N .

23

Order

Theorem (Pairwise Substitution)
If Φxa, is tm x ; aeq x x ` aeq M1 M2 and Φxa ` aeq N1 N2, then
Φxa ` aeq ([N1/x]M1) ([N2/x]M2).

Uniqueness

Terms M ::= x | lam x .M | app M1 M2

Types A ::= i | arr A B
Context Schema St := is tm x ; x :A

Theorem (Type Uniqueness)
If Φt ` M : A and Φt ` M : B then A = B .

24

Substitution

Parallel Reduction

x x ∈ Γ
prv

Γ ` x x

Γ, is tm x ; x x ` M N
prl

Γ ` lam x .M lam x .N

Γ, is tm x ; x x ` M M ′ Γ ` N N ′
prβ

Γ ` (app (lam x .M) N) [N ′/x]M ′

Γ ` M M ′ Γ ` N N ′
pra

Γ ` (app M N) (app M ′ N ′)

Context Schemas Sr := is tm x ; x x
Srt := is tm x ; x x ; x :A

25

Substitution (Continued)

Lemma (Substitution)
If Φt , is tm x ; x :A ` M : B and Φt ` N : A, then Φt ` [N/x]M : B .

Theorem (Type Preservation for Parallel Reduction)
If Φrt ` M N and Φrt ` M : A, then Φrt ` N : A.

Context Schema Sαt ::= is tp α + is tm x ; x :A

Lemma (Substitution)
If Φαt , is tp α ` M : B and Φαt ` is tp A, then
Φαt ` [A/α]M : [A/α]B .

26

