More Church-Rosser Proofs
(and Refutations) in Beluga

Alberto Momigliano

joint work with Martina Sassella
LSFA 2023

One of the most formalized proof in PL theory

Author Red Sys Style Aut
Shankar 88 B Boyer-Moore DB 2
Huet 94 residuals Coq DB 1
Nipkow 01 6n Isabelle/HOL DB 2
McKinna et al 98 pIPTS Lego LN 2
Chargeraud 09 B Coq LN 1
Smolka et al. 15 B Coq AutoSubst | 2
Brotherston et al. 03 B Isabelle/HOL named 1
Ford et al. 01 B PVS a-quotient | 1
Urban et al. 05 B Nominal Isabelle | nominal 1
Nagele etal. 17 B Nominal Isabelle | nominal 1
Gherietal. 21 B Isabelle/HOL nominal 1
Coppello al. 17 B Agda BVC 0
Pfenning 92 p Elf HOAS 0
Accattoli 12 residuals Abella HOAS 1

Aut(omation): 0 -2 (2, higher), BVC = Barendregt’s convention

Why, oh why another HOAS formalization and why in
Beluga?

» Part of a more general project of developing a curriculum
to teach the classic theory of the lambda-calculus to
Master students, who can’t do a g-reduction

> Using a proof assistant in the spirit of UPenn’s Software
Foundations
> also because (sue me) Barendregt’s bible is unreadable

» Go beyond g: consider n and extension to typed calculi

» Complement proofs with refutations, i.e., searching for
counterexamples, in the spirit of Coq/QuickChick

Why, oh why another HOAS formalization and why in
Beluga?

» Part of a more general project of developing a curriculum
to teach the classic theory of the lambda-calculus to
Master students, who can’t do a g-reduction

> Using a proof assistant in the spirit of UPenn’s Software
Foundations
> also because (sue me) Barendregt’s bible is unreadable

» Go beyond g: consider n and extension to typed calculi

» Complement proofs with refutations, i.e., searching for
counterexamples, in the spirit of Coq/QuickChick

» With a caveat: we (the authors) have

> Little understanding of BELUGA’s meta-theory

> Only basic knowledge of that very classic theory of the
lambda-calculus that we'd like to teach

> ...but we know a thing or two about encoding formal
systems with binders.

Abstract reduction systems

> (A R): Aset, RS Ax A (think g)
> R*:reflexive and transitive closure R (think g multi-step)
> R=:least equivalence containing R (think g conversion)

confluence Church-Rosser

Classic proof strategy for confluence

» diamond — confluence
R R

1
I
R : R Strip R*
I
I

» confluence — CR

Let there be Parallel Reduction

> B does not enjoy diamond
» Idea: find a reduction relation S that does and show that
S* — ﬁ*

MIEM{ M2:M2,bt
ela

(Ax.M})My = M| [M}/x]

M= M

— Im
Ax.M = Ax.M'

Mlei MzﬁMéap

Ml M2 ﬂMll Mé

var
X=X

While contracting a redex, also reduce the subterms, and so
for congruence rules

What we have proved

v

CR(p) for the untyped lambda calculus

> direct proof of diamond for parallel reduction following
[Pfenning 92]

1. with relations specified at the LF level
2. with relations specified in BELUGA’s meta-level

> using Takahashi’s complete developments

A\

CR(n) for the untyped lambda calculus via the
Commutationlemma

v

CR(pn) for the untyped lambda calculus via the
Commutative Unionlemma.

CR(p) for typed calculi: simple types and System E both
via complete developments.

v

Why didn't you . ..

> use a mainstream proof assistant?
> It's been done to death
> Binders are still problematic, HOAS only partially
supported
> In curricula such as SE you end up teaching 80% Coq, 20%
PL theory
> We like proof terms and dependent types w/o the baggage

> just stick to complete developments for fn as well?
> There is value in having confluence of fn emerge from
confluence of each relations separately.
> It also helps in other results such as p-postponement (still
to do)

HOAS

» I assume you have some familiarity with the idea of
higher-order abstract syntax

LF term : type =
| app : term -> term -> term
| lam : (term -> term) -> term;

aterm Ax.x is represented by a LF term (1am \x.x)

HOAS

» I assume you have some familiarity with the idea of
higher-order abstract syntax

LF term : type =
| app : term -> term -> term
| lam : (term -> term) -> term;

aterm Ax.x is represented by a LF term (1am \x.x)

» Arelation such as parallel reduction is represented with a
LF type family with essential use of
parametrical-hypothetical judgments:

LF pred : term -> term -> type =
| beta : ({x:term} pred x x -> pred (M1 x) (M1’ x)) -> pred M2 M2’
-> pred (app (lam M1) M2) (M1’ M2’)
| Im : ({x:term} pred x x -> pred (M x) (M’ x))
-> pred (lam M) (lam M’)
| ap : pred M1 M1’ -> pred M2 M2’
-> pred (app M1 M2) (app M1’ M2’)

Note again: no case for vars

CR(B)

Brief highlights, since we follow existing encodings
» No technical lemmas about variables, renamings etc.
» We do have to prove that parallel reduction is stable under
substitution, but it’s from first principles:

rec subst: (g:rctx)[g,x:term,u:pred x x |- pred M[..,x] M’[..,x]]
-> [g |- pred N N’] -> [g |- pred M[..,N] M’[..,N°]] = ..

» Direct proof of diamond for pred has a complex
case-analysis, just like the on paper proof

» Taka’s proof goes through a relational encoding of
complete developments,which is fine as we only need
totality, not uniqueness x

N

CR(n)

We consider n-reduction in isolation and apply:

Lemma (Commutation — Hidley-Rosen)

Two strongly commuting reductions commute.
S S*

Since both LF and BELUGA are (roughly) first order type
theories, we can’t work on ARS and we instantiate here Rand S
0 —p:

> We show that —;, strongly commutes with itself

» We (re)prove Commutation for this instance

Encoding of CR(7)

> On the bright size, encoding the proviso in n-reduction is
immediate within HOAS as the meta-variable 1 not
depending on x in the LF function \x. (app ¥ x).

LF eta_red : term -> term -> type =
| eta : eta_red (lam \x.(app M x)) M
% .. congruence rules omitted

» This “non”-occurrence yields one technical lemma:

Lemma (Strengthening)

IfT,x+ M —, N, and M does not depend on x, neither does N
andl'+=M —, N.

CR(Bn)

Since we have confluence for f and n separately, we combine
them via the:

Lemma (Commutative Union)
IfR and S are confluent and commute, then RuU S is confluent.
Still some work to do among which:

» strengthening for

> substitution for n and n*

» instances of the Commutation and Strip lemmas

» diamond for g* un*

System F and its intrinsic encoding

» Similar definitions w.r.t. CR, but reduce only well-typed
terms

A:=a|A— B|Va.A
M:=x|a| MN|AxAM|MA|Aa.M

» Thanks to dependent types, we can use intrinsically typed
terms and index judgments via their object types — this is
well-known (see POPLMark reloaded)

LF ty : type = LF tm : ty -> type =
| arr : ty -> ty -> ty | abs : (tm A -> tm B) -> tm (arr A B
| all : (ty -> ty) -> ty | app : tm (arr A B) -> tm A -> tm B
| tlam : ({a:ty} tm (A a)) -> tm (all
| tapp : tm (all A) -> {B:ty} tm (A B

System F and its intrinsic encoding

» Similar definitions w.r.t. CR, but reduce only well-typed
terms
A:=a|A— B|Va.A
M:=x|a| MN|AxAM|MA|Aa.M

» Thanks to dependent types, we can use intrinsically typed
terms and index judgments via their object types — this is
well-known (see POPLMark reloaded)

LF ty : type = LF tm : ty -> type =
| arr : ty -> ty -> ty | abs : (tm A -> tm B) -> tm (arr A B
| all : (ty -> ty) -> ty | app : tm (arr A B) -> tm A -> tm B
| tlam : ({a:ty} tm (A a)) -> tm (all
| tapp : tm (all A) -> {B:ty} tm (A B

tlm : ({a:ty} pred (M a) (M’ a)) -> pred (tlam M) (tlam M’)
tap : pred M M’ -> pred (tapp M A) (tapp M’ A)
tbeta : ({a:ty} pred (M1 a) (M1’ a))

-> pred (tapp (tlam M1) A) (M1’ A) ..

LF pred : tm A -> tm A -> type =
|
I
|

System F: Spot the difference

Reflexivity of parallel reduction in the untyped case

schema rctx = block(x:term, t:pred x x)

rec rpar: {g:rctx}{M: [g |- term]l}[g |- pred M M] =
mlam g => mlam M => case [g |- M] of
| [g |- #p.1]1 => [g |- #p.2]
| [g |- lam \x.M’[..,x]] =>
let [g, b:block(x:term,v:pred x x) |- IH[..,b.1,b.2]] =
rpar [g, b:block(x:term,v:pred x x)] [g,b |- M’[..,b.1]] in
[g |- Im \x.\v.IH[..,x,v]]
| [g |- app M1 M2] =>
let [g |- IH1] = rpar [g] [g |- M1] in
let [g |- IH2] = rpar [g] [g |- M2] in
[g |- ap IH1 IH2]

System F: Spot the difference, ctd.

Reflexivity of parallel reduction in System F

schema pctx = some [A:ty] block(x:tm A, v:pred x x) + ty
rec rpar : {g:pctx}M : [g |- tm Al}[g |- pred M M] =
mlam g => mlam M => case [g |- M] of
| [g |- #p.1]1 => [g |- #p.2]
| [g |- abs \x.M’[..,x]] =>
let [g, b:block(x:tm _,v:pred x x) |- IH[..,b.1,b.2]] =
rpar [g, b:block(x:tm _,v:pred x x)] [g,b |- M’[..,b.1]] in
[g |- Im \x.\v.IH[..,x,v]]
| [g |- app M1 M2] =>
let [g |- IH1] = rpar [g] [g |- M1] in
let [g |- IH2] = rpar [g] [g |- M2] in
[g |- ap IH1 IH2]

System F: Spot the difference, ctd.

Reflexivity of parallel reduction in System F

schema pctx = some [A:ty] block(x:tm A, v:pred x x) + ty
rec rpar : {g:pctx}M : [g |- tm Al}[g |- pred M M] =
mlam g => mlam M => case [g |- M] of
| [g |- #p.1]1 => [g |- #p.2]
| [g |- abs \x.M’[..,x]] =>
let [g, b:block(x:tm _,v:pred x x) |- IH[..,b.1,b.2]] =
rpar [g, b:block(x:tm _,v:pred x x)] [g,b |- M’[..,b.1]] in
[g |- Im \x.\v.IH[..,x,v]]
| [g |- app M1 M2] =>
let [g |- IH1] = rpar [g] [g |- M1] in
let [g |- IH2] = rpar [g] [g |- M2] in
[g |- ap IH1 IH2]

| [g |- tlam \a.M’] => % new cases
let [g, a:ty |- IH] =
rpar _ [g, a:ty |- M’] in [g |- tlm \a.IH]
| [g |- tapp M’ A] =>
let [g |- IH] =
rpar _ [g |- M’] in [g |- tap IH]

Conservativity

» The proof of CR for the simply typed lambda calculus is
literally the same w.r.t. the untyped case, modulo indexing
the terms with object types and making explicit some
implicit arguments

» The proof for System F simply add cases for the new
constructors

> Isn't this remarkable? Is this phenomenon of embedding
via indexing common in other instaces?

CR(B) at the meta-level

Forget about it (or ask me after the talk)

Meta-theory model-checking

» People more authoritative than me
have argued about the positive
interplay of searching for proofs and
counterexamples in the same setting

> Counterexamples are not a final
refutations for a theory, but a
principled way to refine conjectures
and proofs thereof.

» The theory of confluence is rife with
counterexamples.

> B-reductions does not have diamond
> the same for 7 in a typed calculus with
units and pairs

> Sure, those are well-known, but many
others can lurk around

Proofs and
Refutations

Imre Lakatos

On the proof-theory of property-based testing

> On lightweight idea is PBT and one way to look at it is via
proof-theory

» For a property Vx: 7.P(x) > Q(x), providing a
counter-example consists of negating the property, and
searching for a proof of 3x: 7.P(x) A 7 Q(x).

» This can be achieved via logic programming search, and
luckily BELuGa has such an engine.

» A general view of the proof-theory of PBT can be carried
out in Miller’s foundational proof certificates framework
[Blanco et al. 19]

Failure of diamond(p)

» State the property:

LF not_joinable : term -> term -> type =
| nj : diff M1 M2 -> step M1 P1 -> step M2 P2
-> diff P1 P2 -> not_joinable M1 M2

LF gencex : nat -> term -> term -> term -> type =
| cx : not_joinable M1 M2 -> step M M1 -> step M M2
-> height I M -> gencex I M M1 M2

> Write a generator of lambda terms — here we use an
exhaustive enumerator bounded by the height of the AST

» Run the query: for 8, you getM =(Ax. x x)(I 1), for I the
identity combinator, which steps to (I (I I) and (I D).

Conclusions

» Church-Rosser, 35 five years in, is still an interesting
benchmark for formalization

» BELUGA’s support for HOAS and context reasoning gives
very elegant proofs, with almost no technical lemmas
foreign to the mathematics of the problem.

» Intrinsically-typed encodings are good

» Not being able to quantify over relations prevents us from
exploiting a general theory of ARS
= tedious repetition while instantiating general lemmas

» Counter-example search in the same setting is also good.

Future work

easy: confluence for simply typed using Newman’s
Lemma (SN & locally confluent entails
confluence), using existent BELuGA SN proof

easy: other results from Taka’s & Accattoli’s paper:
n-postponement, standardization, residuals
medium: CR(p) for PTS — easy untyped, less so
intrinsically-typed
7 CRfor infinitary calculi, Bohm’s tree
(coinduction)

o

