
More Church-Rosser Proofs
(and Refutations) in Beluga

AlbertoMomigliano

joint work withMartina Sassella
LSFA 2023

One of the most formalized proof in PL theory

Author Red Sys Style Aut
Shankar 88 β Boyer-Moore DB 2
Huet 94 residuals Coq DB 1

Nipkow 01 βη Isabelle/HOL DB 2
McKinna et al 98 β/PTS Lego LN 2
Chargeraud 09 β Coq LN 1
Smolka et al. 15 β Coq AutoSubst 2

Brotherston et al. 03 β Isabelle/HOL named 1
Ford et al. 01 β PVS α-quotient 1
Urban et al. 05 β Nominal Isabelle nominal 1
Nagele et al. 17 β Nominal Isabelle nominal 1
Gheri et al. 21 β Isabelle/HOL nominal 1
Coppello al. 17 β Agda BVC 0
Pfenning 92 β Elf HOAS 0
Accattoli 12 residuals Abella HOAS 1

. . .

Aut(omation): 0 – 2 (2, higher), BVC = Barendregt’s convention

Why, oh why another HOAS formalization and why in
Beluga?

Ï Part of a more general project of developing a curriculum
to teach the classic theory of the lambda-calculus to
Master students, who can’t do a β-reduction

Ï Using a proof assistant in the spirit of UPenn’s Software
Foundations

Ï also because (sueme) Barendregt’s bible is unreadable
Ï Go beyond β: consider η and extension to typed calculi
Ï Complement proofs with refutations, i.e., searching for
counterexamples, in the spirit of Coq/QuickChick

Ï With a caveat: we (the authors) have
Ï Little understanding of BELUGA’s meta-theory
Ï Only basic knowledge of that very classic theory of the
lambda-calculus that we’d like to teach

Ï . . .but we know a thing or two about encoding formal
systems with binders.

Why, oh why another HOAS formalization and why in
Beluga?

Ï Part of a more general project of developing a curriculum
to teach the classic theory of the lambda-calculus to
Master students, who can’t do a β-reduction

Ï Using a proof assistant in the spirit of UPenn’s Software
Foundations

Ï also because (sueme) Barendregt’s bible is unreadable
Ï Go beyond β: consider η and extension to typed calculi
Ï Complement proofs with refutations, i.e., searching for
counterexamples, in the spirit of Coq/QuickChick

Ï With a caveat: we (the authors) have
Ï Little understanding of BELUGA’s meta-theory
Ï Only basic knowledge of that very classic theory of the
lambda-calculus that we’d like to teach

Ï . . .but we know a thing or two about encoding formal
systems with binders.

Abstract reduction systems

Ï (A,R): A set, R ⊆A×A (think β)
Ï R∗: reflexive and transitive closure R (think βmulti-step)
Ï R≡: least equivalence containing R (think β conversion)

R

R

R

R

diamond

R∗

R∗

R∗

R∗

confluence

R≡

R∗

R∗

Church-Rosser

Classic proof strategy for confluence

Ï diamond −→ confluence

R

R

R

R Strip−−−−→ R∗

R

R

R∗ −→

R

R∗

R∗

R Strip−−−−→ R∗

R∗

R∗

R∗

Ï confluence←→ CR

Let there be Parallel Reduction

Ï β does not enjoy diamond
Ï Idea: find a reduction relation S that does and show that
S∗ =β∗

M1 =⇒ M ′
1 M2 =⇒ M ′

2
beta

(λx.M1)M2 =⇒ M ′
1[M ′

2/x]

M =⇒ M ′
lm

λx.M =⇒ λx.M ′

M1 =⇒ M ′
1 M2 =⇒ M ′

2 ap
M1M2 =⇒ M ′

1M
′
2

var
x =⇒ x

While contracting a redex, also reduce the subterms, and so
for congruence rules

What we have proved

Ï CR(β) for the untyped lambda calculus
Ï direct proof of diamond for parallel reduction following
[Pfenning 92]

1. with relations specified at the LF level
2. with relations specified in BELUGA’s meta-level

Ï using Takahashi’s complete developments
Ï CR(η) for the untyped lambda calculus via the
Commutation lemma

Ï CR(βη) for the untyped lambda calculus via the
Commutative Union lemma.

Ï CR(β) for typed calculi: simple types and System F, both
via complete developments.

Why didn’t you . . .

Ï use amainstream proof assistant?
Ï It’s been done to death
Ï Binders are still problematic, HOAS only partially
supported

Ï In curricula such as SF, you end up teaching 80% Coq, 20%
PL theory

Ï We like proof terms and dependent types w/o the baggage
Ï just stick to complete developments for βη as well?

Ï There is value in having confluence of βη emerge from
confluence of each relations separately.

Ï It also helps in other results such as η-postponement (still
to do)

HOAS

Ï I assume you have some familiarity with the idea of
higher-order abstract syntax
LF term : type =
| app : term -> term -> term
| lam : (term -> term) -> term;

a term λx.x is represented by a LF term (lam \x.x)

Ï A relation such as parallel reduction is represented with a
LF type family with essential use of
parametrical-hypothetical judgments:
LF pred : term -> term -> type =
| beta : ({x:term} pred x x -> pred (M1 x) (M1’ x)) -> pred M2 M2’

-> pred (app (lam M1) M2) (M1’ M2’)
| lm : ({x:term} pred x x -> pred (M x) (M’ x))

-> pred (lam M) (lam M’)
| ap : pred M1 M1’ -> pred M2 M2’

-> pred (app M1 M2) (app M1’ M2’)

Note again: no case for vars

HOAS

Ï I assume you have some familiarity with the idea of
higher-order abstract syntax
LF term : type =
| app : term -> term -> term
| lam : (term -> term) -> term;

a term λx.x is represented by a LF term (lam \x.x)

Ï A relation such as parallel reduction is represented with a
LF type family with essential use of
parametrical-hypothetical judgments:
LF pred : term -> term -> type =
| beta : ({x:term} pred x x -> pred (M1 x) (M1’ x)) -> pred M2 M2’

-> pred (app (lam M1) M2) (M1’ M2’)
| lm : ({x:term} pred x x -> pred (M x) (M’ x))

-> pred (lam M) (lam M’)
| ap : pred M1 M1’ -> pred M2 M2’

-> pred (app M1 M2) (app M1’ M2’)

Note again: no case for vars

CR(β)

Brief highlights, since we follow existing encodings
Ï No technical lemmas about variables, renamings etc.
Ï We do have to prove that parallel reduction is stable under
substitution, but it’s from first principles:
rec subst: (g:rctx)[g,x:term,u:pred x x |- pred M[..,x] M’[..,x]]

-> [g |- pred N N’] -> [g |- pred M[..,N] M’[..,N’]] = ..

Ï Direct proof of diamond for pred has a complex
case-analysis, just like the on paper proof

Ï Taka’s proof goes through a relational encoding of
complete developments,which is fine as we only need
totality, not uniqueness x

y z

x∗

∗

CR(η)

We consider η-reduction in isolation and apply:

Lemma (Commutation – Hidley-Rosen)
Two strongly commuting reductions commute.

R

S

S∗

R= =⇒ R∗

S∗

S∗

R∗

Since both LF and BELUGA are (roughly) first order type
theories, we can’t work on ARS and we instantiate here R and S
to −→η :
Ï We show that −→η strongly commutes with itself
Ï We (re)prove Commutation for this instance

Encoding of CR(η)

Ï On the bright size, encoding the proviso in η-reduction is
immediate within HOAS as themeta-variable M not
depending on x in the LF function \x.(app M x).
LF eta_red : term -> term -> type =
| eta : eta_red (lam \x.(app M x)) M
% .. congruence rules omitted

Ï This “non”-occurrence yields one technical lemma:

Lemma (Strengthening)
If Γ,x `M −→η N, andM does not depend on x, neither does N
and Γ`M −→η N.

CR(βη)

Since we have confluence for β and η separately, we combine
them via the:

Lemma (Commutative Union)
If R and S are confluent and commute, then R∪S is confluent.
Still some work to do among which:
Ï strengthening for β
Ï substitution for η and η∗

Ï instances of the Commutation and Strip lemmas
Ï diamond for β∗∪η∗

System F and its intrinsic encoding

Ï Similar definitions w.r.t. CR, but reduce only well-typed
terms

A ::=α |A→B | ∀α.A
M ::=x |α |MN |λxA .M |MA |Λα.M

Ï Thanks to dependent types, we can use intrinsically typed
terms and index judgments via their object types – this is
well-known (see POPLMark reloaded)

LF ty : type = LF tm : ty -> type =
| arr : ty -> ty -> ty | abs : (tm A -> tm B) -> tm (arr A B)
| all : (ty -> ty) -> ty | app : tm (arr A B) -> tm A -> tm B

| tlam : ({a:ty} tm (A a)) -> tm (all A)
| tapp : tm (all A) -> {B:ty} tm (A B)

LF pred : tm A -> tm A -> type =
| tlm : ({a:ty} pred (M a) (M’ a)) -> pred (tlam M) (tlam M’)
| tap : pred M M’ -> pred (tapp M A) (tapp M’ A)
| tbeta : ({a:ty} pred (M1 a) (M1’ a))

-> pred (tapp (tlam M1) A) (M1’ A) ..

System F and its intrinsic encoding

Ï Similar definitions w.r.t. CR, but reduce only well-typed
terms

A ::=α |A→B | ∀α.A
M ::=x |α |MN |λxA .M |MA |Λα.M

Ï Thanks to dependent types, we can use intrinsically typed
terms and index judgments via their object types – this is
well-known (see POPLMark reloaded)

LF ty : type = LF tm : ty -> type =
| arr : ty -> ty -> ty | abs : (tm A -> tm B) -> tm (arr A B)
| all : (ty -> ty) -> ty | app : tm (arr A B) -> tm A -> tm B

| tlam : ({a:ty} tm (A a)) -> tm (all A)
| tapp : tm (all A) -> {B:ty} tm (A B)

LF pred : tm A -> tm A -> type =
| tlm : ({a:ty} pred (M a) (M’ a)) -> pred (tlam M) (tlam M’)
| tap : pred M M’ -> pred (tapp M A) (tapp M’ A)
| tbeta : ({a:ty} pred (M1 a) (M1’ a))

-> pred (tapp (tlam M1) A) (M1’ A) ..

System F: Spot the difference

Reflexivity of parallel reduction in the untyped case
schema rctx = block(x:term, t:pred x x)

rec rpar: {g:rctx}{M: [g |- term]}[g |- pred M M] =
mlam g => mlam M => case [g |- M] of
| [g |- #p.1] => [g |- #p.2]
| [g |- lam \x.M’[..,x]] =>

let [g, b:block(x:term,v:pred x x) |- IH[..,b.1,b.2]] =
rpar [g, b:block(x:term,v:pred x x)] [g,b |- M’[..,b.1]] in
[g |- lm \x.\v.IH[..,x,v]]

| [g |- app M1 M2] =>
let [g |- IH1] = rpar [g] [g |- M1] in
let [g |- IH2] = rpar [g] [g |- M2] in
[g |- ap IH1 IH2]

System F: Spot the difference, ctd.

Reflexivity of parallel reduction in System F
schema pctx = some [A:ty] block(x:tm A, v:pred x x) + ty
rec rpar : {g:pctx}{M : [g |- tm A]}[g |- pred M M] =
mlam g => mlam M => case [g |- M] of
| [g |- #p.1] => [g |- #p.2]
| [g |- abs \x.M’[..,x]] =>

let [g, b:block(x:tm _,v:pred x x) |- IH[..,b.1,b.2]] =
rpar [g, b:block(x:tm _,v:pred x x)] [g,b |- M’[..,b.1]] in
[g |- lm \x.\v.IH[..,x,v]]

| [g |- app M1 M2] =>
let [g |- IH1] = rpar [g] [g |- M1] in
let [g |- IH2] = rpar [g] [g |- M2] in
[g |- ap IH1 IH2]

| [g |- tlam \a.M’] => % new cases
let [g, a:ty |- IH] =

rpar _ [g, a:ty |- M’] in [g |- tlm \a.IH]
| [g |- tapp M’ A] =>

let [g |- IH] =
rpar _ [g |- M’] in [g |- tap IH]

System F: Spot the difference, ctd.

Reflexivity of parallel reduction in System F
schema pctx = some [A:ty] block(x:tm A, v:pred x x) + ty
rec rpar : {g:pctx}{M : [g |- tm A]}[g |- pred M M] =
mlam g => mlam M => case [g |- M] of
| [g |- #p.1] => [g |- #p.2]
| [g |- abs \x.M’[..,x]] =>

let [g, b:block(x:tm _,v:pred x x) |- IH[..,b.1,b.2]] =
rpar [g, b:block(x:tm _,v:pred x x)] [g,b |- M’[..,b.1]] in
[g |- lm \x.\v.IH[..,x,v]]

| [g |- app M1 M2] =>
let [g |- IH1] = rpar [g] [g |- M1] in
let [g |- IH2] = rpar [g] [g |- M2] in
[g |- ap IH1 IH2]

| [g |- tlam \a.M’] => % new cases
let [g, a:ty |- IH] =

rpar _ [g, a:ty |- M’] in [g |- tlm \a.IH]
| [g |- tapp M’ A] =>

let [g |- IH] =
rpar _ [g |- M’] in [g |- tap IH]

Conservativity

Ï The proof of CR for the simply typed lambda calculus is
literally the same w.r.t. the untyped case, modulo indexing
the terms with object types andmaking explicit some
implicit arguments

Ï The proof for System F simply add cases for the new
constructors

Ï Isn’t this remarkable? Is this phenomenon of embedding
via indexing common in other instaces?

CR(β) at the meta-level

Forget about it (or askme after the talk)

Meta-theory model-checking

Ï People more authoritative thanme
have argued about the positive
interplay of searching for proofs and
counterexamples in the same setting

Ï Counterexamples are not a final
refutations for a theory, but a
principled way to refine conjectures
and proofs thereof.

Ï The theory of confluence is rife with
counterexamples.

Ï β-reductions does not have diamond
Ï the same for η in a typed calculus with
units and pairs

Ï Sure, those are well-known, but many
others can lurk around

On the proof-theory of property-based testing

Ï On lightweight idea is PBT and one way to look at it is via
proof-theory

Ï For a property ∀x : τ.P(x) ⊃Q(x), providing a
counter-example consists of negating the property, and
searching for a proof of ∃x : τ.P(x)∧¬Q(x).

Ï This can be achieved via logic programming search, and
luckily BELUGA has such an engine.

Ï A general view of the proof-theory of PBT can be carried
out inMiller’s foundational proof certificates framework
[Blanco et al. 19]

Failure of diamond(β)

Ï State the property:
LF not_joinable : term -> term -> type =
| nj : diff M1 M2 -> step M1 P1 -> step M2 P2

-> diff P1 P2 -> not_joinable M1 M2

LF gencex : nat -> term -> term -> term -> type =
| cx : not_joinable M1 M2 -> step M M1 -> step M M2

-> height I M -> gencex I M M1 M2

Ï Write a generator of lambda terms – here we use an
exhaustive enumerator bounded by the height of the AST

Ï Run the query: for β, you get M=(λx. x x)(I I), for I the
identity combinator, which steps to (I I)(I I) and (I I).

Conclusions

Ï Church-Rosser, 35 five years in, is still an interesting
benchmark for formalization

Ï BELUGA’s support for HOAS and context reasoning gives
very elegant proofs, with almost no technical lemmas
foreign to themathematics of the problem.

Ï Intrinsically-typed encodings are good
Ï Not being able to quantify over relations prevents us from
exploiting a general theory of ARS
⇒ tedious repetition while instantiating general lemmas

Ï Counter-example search in the same setting is also good.

Future work

easy: confluence for simply typed using Newman’s
Lemma (SN & locally confluent entails
confluence), using existent BELUGA SN proof

easy: other results from Taka’s & Accattoli’s paper:
η-postponement, standardization, residuals

medium: CR(β) for PTS – easy untyped, less so
intrinsically-typed

? CR for infinitary calculi, Bohm’s tree
(coinduction)

That’s all, folks!

