
The Blame Game for Property-based Testing:
work-in-progress

Alberto Momigliano,
joint work with Mario Ornaghi

DI, University of Milan

CILC 2019, Trieste

Property-based Testing

I A light-weight validation approach merging two well known
ideas:

1. automatic generation of test data, against
2. executable program specifications.

I Brought together in QuickCheck (Claessen & Hughes ICFP
00) for Haskell

I The programmer specifies properties that functions should
satisfy inside in a very simple DSL, akin to Horn logic

I QuickCheck aims to falsify those properties by trying a large
number of randomly generated cases.

αCheck

I Our recently (re)released tool:
https://github.com/aprolog-lang

I On top of αProlog, a simple extension of Prolog with nominal
abstract syntax.

I Use nominal Horn formulas to write specs and checks.

I Equality coincides with ≡α, # means “not free in”, 〈x〉M is
M with x bound, Nis the fresh Pitts-Gabbay quantifier.

I αCheck searches exhaustively for counterexamples, using
iterative deepening.

I Our intended domain: the meta-theory of programming
languages artifacts: from static analyzers to interpreters,
compilers, parsers, pretty-printers, down to run-time
systems. . .

https://github.com/aprolog-lang

A motivating (toy) example 1/2

I This grammar characterizes all the strings with the same
number of a’s and b′s:

S ::= . | bA | aB

A ::= aS | bAA

B ::= bS | aBB

I We encode it in αProlog, inserting two quite obvious bugs,
but be charitable and think of a much larger grammar:
I viz., the grammar of Ocamllight consists of 251 productions

ss([]).

ss([b|W]) :- ss(W).

ss([a|W]) :- bb(W).

bb([b|W]) :- ss(W).

bb([a|VW]) :- append(V,W,VW), bb(V), bb(W).

aa([a|W]) :- ss(W).

(an ice cream to the first who finds both bugs in the next 30 secs)

A motivating (toy) example 2/2

I We use αCheck to debug it, splitting the characterization of
the grammar into soundness and completeness:

#check "sound" 10: ss(W), count(a,W,N1), count(b,W,N2)

=> N1 = N2.

#check "compl" 10: count(a,W,N), count(b,W,N) => ss(W).

I The tool dutifully reports (at least) two counterexamples:

Checking for counterexamples to

sound: N1 = z, N2 = s(z), W = [b]

compl: N = s(s(z)), W = [b,b,a,a]

I Where is the bug? Which clause(s) shall we blame? Can we
help the user localize the slice of program involved?

The idea: 1/3

I Where do bugs come from? That’s a huge problem.

I Did anybody say declarative debugging? Let’s do something
less heavy handed.

I We do not claim to have a general approach:

I First, we’re addressing the sub-domain of mechanized
meta-theory model-checking, where fully declarative PL models
are tested against theorems these systems should obey

I Second, we just want to give some practical help to the poor
user debugging a model w/o exploiting her as an oracle.

The idea: 1/3

I Where do bugs come from? That’s a huge problem.

I Did anybody say declarative debugging?

Let’s do something
less heavy handed.

I We do not claim to have a general approach:

I First, we’re addressing the sub-domain of mechanized
meta-theory model-checking, where fully declarative PL models
are tested against theorems these systems should obey

I Second, we just want to give some practical help to the poor
user debugging a model w/o exploiting her as an oracle.

The idea: 1/3

I Where do bugs come from? That’s a huge problem.

I Did anybody say declarative debugging? Let’s do something
less heavy handed.

I We do not claim to have a general approach:

I First, we’re addressing the sub-domain of mechanized
meta-theory model-checking, where fully declarative PL models
are tested against theorems these systems should obey

I Second, we just want to give some practical help to the poor
user debugging a model w/o exploiting her as an oracle.

The idea: 1/3

I Where do bugs come from? That’s a huge problem.

I Did anybody say declarative debugging? Let’s do something
less heavy handed.

I We do not claim to have a general approach:

I First, we’re addressing the sub-domain of mechanized
meta-theory model-checking, where fully declarative PL models
are tested against theorems these systems should obey

I Second, we just want to give some practical help to the poor
user debugging a model w/o exploiting her as an oracle.

The idea 2/3

I The #check pragma corresponds to specs of the form that we
try and refute ∀~X . G ⊃ A

I Take completeness of the above grammar:
∃W. count(a,W,N), count(b,W,N), not(ss(W)).

A counterexample is a grounding substitution θ that θ(G) is

derivable, but θ(A) is not

I For the above to unexpectedly succeed, two (possibly
overlapping) things may go wrong:

MA: θ(A) fails, whereas it belongs to the intended interpretation of
its definition (missing answer);

WA: a bug in θ(G) creates some erroneous bindings that make the
conclusion fail (wrong answer).

The idea 3/3

I Our “old-school” idea consists in coupling:

1. abduction to try and diagnose MA’s with
2. proof verbalization: presenting at various levels of abstraction

proof-trees for WA’s to explain where the bug occurred.

I Differently from declarative debugging, we ask the user only
to state who she trusts:
I built-in, certainly; libraries, most likely;
I predicates that have sustained enough testing;

I and which are the abductable predicates:
I some heuristics based on the dependency graph should help.

Proof verbalization

I Back to the soundness check: we trust unification and the
auxiliary count predicate . . .

ss(W), count(a,W,N1), count(b,W,N2) => N1 = N2.

sound: N1 = z, N2 = s(z), W = [b]

I . . . hence it must be a case of WA, starring ss([b]).
Verbalizing the proof tree yields:

ss([b]) for rule s2, since:

ss([]) for fact s1.

I This points to rule s2

ss([b|W]) :- ss(W). % BUG

ss([b|W]) :- aa(W). % OK

I Clearly, proof trees tend to be longer than that and we distill
them to hide information, up to showing only the skeleton of
the proof (the clauses used).

Abduction

I Once we fix the previous bug, the second still looms:

count(a,W,N), count(b,W,N) => ss(W).

compl: N = s(s(z)), W = [b,b,a,a]

I It’s a MA: putting all the grammar in the abducibles, we have:

ss([b,b,a,a]) for rule s2, since:

aa([b,a,a]) for assumed.

I We realize that there is no clause head aa([b|VW]) in the
program, matching the failed leaf: we have forgot the clause:

aa([b|VW]) :- append(V,W,VW), aa(V),aa(W).

I I told you the bugs were silly, didn’t I?

I That’s why we implemented a tool for mutation testing:
plenty of unbiased faulty programs to explain away!

Abduction

I Once we fix the previous bug, the second still looms:

count(a,W,N), count(b,W,N) => ss(W).

compl: N = s(s(z)), W = [b,b,a,a]

I It’s a MA: putting all the grammar in the abducibles, we have:

ss([b,b,a,a]) for rule s2, since:

aa([b,a,a]) for assumed.

I We realize that there is no clause head aa([b|VW]) in the
program, matching the failed leaf: we have forgot the clause:

aa([b|VW]) :- append(V,W,VW), aa(V),aa(W).

I I told you the bugs were silly, didn’t I?

I That’s why we implemented a tool for mutation testing:
plenty of unbiased faulty programs to explain away!

Mutation testing

I Change a source program in a localized way by introducing a
single (syntactic) fault — have a “mutant”, hopefully not
semantically equivalent.

I “Kill it” with your testing suite means finding the fault.

I A killed mutant is a good candidate for blame assignment: it
contains reasonable bugs not planted by ourselves.

I We have written a mutator for αProlog by randomically
applying type-preserving mutation operators

I and checking with αCheck (up to a bound of course) that the
mutant is not equivalent to its ancestor;

I if so, we pass it to the blame tool for explanation.

Architecture of the tool

I The back-end consists of an αProlog meta-interpreter working
on a reified version of the sources of an αProlog program

I The front-end is written in Prolog and is responsible for
everything else:
I The reification process and syncing the latter with the sources
I Calling αCheck, feeding the meta-interpreter with the

necessary info and doing the verbalization

 Prolog source

reify

Prolog
metaInterpreter

check

counter-examples

explanations

Prolog object

Conclusions

I We are close to release a tool for explanations of bugs
reported by αCheck for full αProlog— whose features we
have not used in this talk.

I While our approach of abduction + explanations is
simple-minded it tries to find a sweet spot in helping
understanding bugs in PL models w/o going full steam into
declarative debugging

I Experience (e.g., significant case studies) will tell if we
succeeded

I The mutator is of independent interest for evaluating the
effectiveness of the various strategies of αCheck in finding
bugs in αProlog specifications.

Thanks!

