
DRAFT July 5, 2015
c© Cheney, Momigliano & Pessina

This work is licensed under the
Creative Commons Attribution License.

Run your Research, Mind the Binders

James Cheney
University of Edinburgh

jcheney@inf.ed.ac.uk

Alberto Momigliano
Università degli Studi di Milano

momigliano@di.unimi.it

Matteo Pessina
Università degli Studi di Milano

matteo.pessina3@studenti.di.unimi.it

αCheck is a light-weight property-based testing tool built on top of αProlog. Being based on nominal
logic programming, it is particularly suited to the validation of the meta-theory of formal systems.
To substantiate this claim we compare its performances w.r.t. its main competitors in the logical
framework niche, namely the QuickCheck/Nitpick combination offered by Isabelle/HOL and the
random testing facility in PLT-Redex. We briefly sketch the architecture of αCheck and mention
some future directions for the tool and for benchmarking mechanized meta-theory model-checking
systems more generally.

1 Introduction

Notwithstanding recent progress, formal verification of the meta-theory of formal systems via proof
assistants is still hard work — especially if either the specification or the intended theorem is wrong.
While a failed proof attempt can give revealing insights about what went wrong in the case of deep
results, it is almost always not the best way to debug a specification or a theorem, when they are “morally
right”, in the sense that minor modifications will make the proof go through. For this class of shallow
bugs, a tool that automatically finds counterexamples can be surprisingly effective [5, 11] and can even
complement formal proof attempts by warning when the property being proved is false [2]. The beauty
of such meta-theory model checking is that, compared to other general forms of system validation, the
properties that should hold are already given by means of the theorems that the calculus under study is
supposed to satisfy. Of course, those need to be fine tuned for testing to be effective, but we are mostly
free of the thorny issue of specification/invariant generation.

In fact, such tools are now gaining some traction in the field as we discuss in Section 4, see in
particular the QuickCheck/Nitpick combination offered in Isabelle/HOL [2] and random testing in PLT-
Redex [11], the latter being a particularly persuasive demonstration of the effectiveness of such an ap-
proach.1 However, none of them has any direct support for binding syntax. To quote from [11]:

“Redex offers little support for handling binding constructs in object languages. It provides a generic
function for obtaining a fresh variable, but no help in defining capture-avoiding substitution or α-
equivalence . . . In one case . . . managing binders constitutes a significant portion of the overall time
spent . . . ”

This lack of support can make testing either ineffective (Isabelle/HOL) or requiring an additional amount
of coding, which may need to be duplicated in every case study (PLT-Redex, in particular the fine tuning
of random generators):

“Generators derived from grammars . . . require substantial massaging to achieve high test coverage.
This deficiency is particularly pressing in the case of typed object languages, where the massaging
code almost duplicates the specification of the type system”. (ibid.)

1Exhaustive counterexample search over finite spaces in Bedwyr [1] is somewhat different, as we touch upon next.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Run your research, mind the binders

We were among the first to propose automated counterexample search for language specifications [5],
including a prototype based on the αProlog nominal logic programming language [6]. In contrast to
QuickCheck/Nitpick and PLT Redex, our approach supports binding syntax directly and uses logic pro-
gramming to perform exhaustive symbolic search for counterexamples. To date, there has been no em-
pirical comparison of our approach with these alternatives, due in part to the absence of an easy-to-use
implementation of our approach. This paper reports on work in progress on a re-implementation of our
approach called αCheck, a property-based testing tool for mechanized meta-theory model-checking. We
first give a short tour of αCheck and review related systems and our approach, and then report on case
studies comparing αCheck with our main competitors. We conclude with a discussion of future steps for
αCheck and for benchmarking mechanized meta-theory model-checking systems more generally.

2 A Brief Tour of the Checker

We use a simply-typed λ -calculus augmented with constructors for integers and lists, following the PLT-
Redex benchmark sltk.lists.rkt from [9], which we will also use in Section 5.3. Note the presence
of an (uncaught) error expression, to model run time errors such taking the head of an empty list. The
language is formally declared as follows:

Types A,B ::= int | ilist | A→ B
Terms M ::= x | λx:A. M |M1 M2 | c | error
Constants c ::= n | nil | cons | hd | tl
Values V ::= c | λx:A. M | cons V1 V2

We start by declare in our tool the syntax of terms, constant and types, while values will be carved
out via an appropriate predicate. A similar predicate is err characterizes the threading of the error
expression in the operational semantics, following standard practice. We assume some familiarity with
nominal logic and just mention that lam(x\var(x),intTy) is concrete syntax for λx:int. x.

ty: type. id: name_type. exp: type. cst: type.

intTy: ty. listTy: ty. funTy: (ty,ty) -> ty.

var: id -> exp. c: cst -> exp. app: (exp,exp) -> exp. lam: (id\exp,ty) -> exp. error:exp

cons: cst. hd: cst. tl: cst. nil: cst.

toInt: int -> cst.

We follow this up with the static and dynamic semantics, where we omit the judgments for value
and substitution, which are analogous to the ones in [5]. Note that error has any type and constants
are typed via a table tcc, omitted. The freshness predicate t # u indicates that name t does not appear
free in term u; in particular, if u is also a name then freshness is name-inequality.

type ctx = [(id,ty)].

pred tc (ctx,exp,ty).

tc(_,error,T).

tc(_,c(C),T) :- tcc(C,T).

tc([(X,T)|G],var X,T).

tc([(Y,_)|G],var X,T) :- X # Y, tc(G,var(X),T).

tc(G,app(M,N),U) :- tc(G,M,funTy(T,U)), tc(G,N,T).

tc(G,lam(x\M),funTy(T,U)) :- x # G, tc([(x, T) |G],M,U).

pred step(exp,exp).

step(app(c(hd),app(app(c(cons),X),_)),X).

Cheney, Momigliano & Pessina 3

step(app(c(tl),app(app(c(cons),_),XS)),XS).

step(app(lam(x\M),N),P) :- value N, substp(M,x,N,P).

step(app(M1,M2),app(M1’,M2)) :- step(M1,M1’).

step(app(M1,M2),app(M1,M2’)) :- value(M1),step(M2,M2’).

pred is_err(exp).

is_err(error).

is_err(app(c(hd),c(nil)))).

is_err(app(c(tl),c(nil))).

is_err(app(E1,E2)) :- is_err(E1).

is_err(app(V1,E2)) :- value(V1),is_err(E2).

The idea is to test some properties, trying to falsify them up to a certain bound. Following the
PLT-Redex development, we will concentrate here only on checking that the following preservation and
progress properties hold. We remark, as we have shown in [5], that it is often worthwhile to check also
auxiliary lemmas, e.g. that substitution is functional or that weakening holds for the typing judgments,
since this can help uncover bugs that may not show up if only the main statement is tested. So, we add
in a separate file these checking directives, where the logical variables are universally quantified:
#check "preserv" 7 : tc([],E,T), step(E,E’) => tc([],E’,T).

#check "progress" 7: tc([],E,T) => progress(E).

Here, ‘7’ is the resource bound (i.e. maximum proof depth) for exploring the search-space in this case;
progress is a predicate encoding the propery of “being either a value, an error, or able to make a step”.
The tool will not find any counterexample, because, well, those properties are actually true of the given
setup. Now, following the Redex manual [9], let us insert a typo that swaps the range and domain types
of the function in the application rule, which now reads:
tc(G,app(M,N),U) :- exists T. tc(G,M,funTy(T,U)), tc(G,N,U). % was funTy(U,T)

We ask ourselves: what properties become false? Which remain true? The checker returns immediately
with this counterexample to progress:
E = app(c(hd),c(toInt(N)))

T = intTy

This is concrete syntax for hd(n), an expression erroneously well-typed and obviously stuck (where n is
any number). Preservation meets a similar fate:
M = app(lam(x\app(var(x),error),funTy(T,intTy)),c(toInt(N)))

M’ = app(c(toInt(N)),error)

T = intTy

3 System Architecture

To provide context for the case studies discussed in the rest of the paper, we review the αCheck system
architecture. Given a pure αProlog program specifying a formal system, we consider properties of
the form ∀~X . N~a. H1 ∧ ·· · ∧Hn ⊃ A, where ~X and ~a include all of the free variables and names of
the hypotheses Hi and test formula A. To find a counterexample means (logically) to solve the goal
∃~X . N~a.H1∧ ·· ·∧Hn∧¬A; a counterexample is a substitution θ such that θ(H1), . . . ,θ(Hn) all hold but
the conclusion θ(A) does not. (Recall that the Gabbay-Pitts N-quantifier is self-dual, so ¬ Na.φ ⇐⇒
Na.¬φ holds.) Moreover, αProlog’s default depth-first search is typically ineffective for searching for

counterexamples, so instead, we employ iterative deepening search up to a given resource bound.
Since we live in a logic programming world, the choice of what we mean by “not holding” is crucial,

as we must choose an appropriate notion of negation. We explore two approaches, the first being the

4 Run your research, mind the binders

standard negation-as-failure rule (NF) and the other based on the technique of negation elimination (NE)
[12], a source-to-source transformation replacing negated subgoals with calls to equivalent positively
defined predicates. A detailed explanation of the two approaches can be found in [5].

The main differences (for the purposes of this paper) are that NF requires grounding the free variables
of the test before solving the negated goal, to avoid the usual non-logical behavior of negation-as-failure.
We currently support NF by automatically generating grounding predicates. In contrast, NE does not
require grounding, but does require generating predicates for term inequality and non-freshness of names
in addition to the negated predicates. Further, existential subgoals are negated using extensional universal
quantifiers, which perform case unfolding. The generated code typically has a high branching factor due
to this and other redundancies, and is not aggressively optimized. We also consider a special case NE−

that uses standard universal quantification instead (which is faster but less complete). In practice, NF is
often (but not always) faster than NE; however, we have a stronger correctness guarantee for NE, since
αProlog’s implementation of negation-as-failure is not currently backed up by a semantics or correctness
proof.

4 Related Work

Our approach owes both to bounded model checking as well as to property-based testing on the QuickCheck
tradition [7]. Here we mention only systems that directly have been used for meta-theory model check-
ing.

The system where proofs and disproofs are better integrated is arguably Isabelle/HOL [2]: it of-
fers a QuickCheck-like combination of random, exhaustive and symbolic testing, as well as Nitpick [3],
a higher-order model finder in the Alloy lineage supporting (some) (co)inductive definitions. It works
translating a significant fragment of Isabelle/HOL into first-order relational logic and then invoking Al-
loy’s SAT-based model enumerator. Isabelle’s QuickCheck, due to some remarkable work on automatic
inference of (smart) generators, is very friendly to use but it is still restricted to the executable fragments
of functional specifications. Nitpick in a sense tries to do too much, addressing most of higher-order
logic. In our experience, most of the inductive definitions of related to meta-theory model-checking fall
out of the handled fragment.2

The other major contender is PLT-Redex [9], an executable DSL for mechanizing semantic models
built on top of DrRacket, with special support for evaluation semantics. Redex has been the first envi-
ronment to adopt the idea of random testing ’a la QuickCheck for validation of the meta-theory of object
language, with significant success [11]. As we have mentioned, the main drawbacks are again the lack of
support for binders and low coverage of test generators stemming from grammars definitions. The user
is therefore required to write her own generators, a task which tends to be demanding.

Finally, the Bedwyr system [1] supports exhaustive search for finite domains, applied for example to
bisimulation checking for finitary pi-calculus. In principle, Bedwyr should support some form of meta-
theory model-checking (provided suitable finite generators are implemented for a given object language),
but we have not yet performed experiments comparing its behavior with αCheck or other systems in
detail.

2Note that QuickCheck and Nitpick’s do not interact well with Nominal Isabelle [15], as it requires strengthening its support
for computation with names, permutations and abstract syntax modulo α-conversion.

Cheney, Momigliano & Pessina 5

5 Case Studies

All test have been performed under Ubuntu 14.4 on a Intel Core i7 CPU 870, 2.93GHz with 8GB RAM.
These tests must be taken with a lot of salt: not only our tool is under active development, in particular
yielding very different search-spaces for NF and NE, but the comparison with the other systems is only
roughly indicative, having to factor out differences between logic and functional programming, as well
the sheer scale, and therefore indirectness, of a system such as Isabelle/HOL.

5.1 Basic Properties of Lists
While not terribly exciting, these benchmarks, proposed and measured in [4] and taken from Isabelle
List.thy theory are useful to set up a rough comparison with Isabelle’s QuickCheck. We show the checks
in our logic programming formulation, leaving to the reader the obvious meaning, noting only that we
use numerals as datatype.
D1: distinct([X|XS])=> distinct(XS).

D2: distinct(XS),remove1(X,XS,YS)=> distinct(YS).

D3: distinct(XS),distinct(YS),zip(XS,YS,ZS)=> distinct(ZS).

S1: sorted(XS),remove_dupls(XS,YS)=> sorted(YS).

S2: sorted(XS),insert(X,XS,YS)=> sorted(YS).

S3: sorted(XS),length(XS,N),less_equal(I,J),less(J,N),nth(I,XS,X),nth(J,XS,Y)=>less_equal(X,Y).

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
D1 S 0 0 0 0.2 0.7 3.8 22 135 862

NF 0 0 0 0 0 0 0 0 0 0.07 0.12 0.2 0.32 0.52 0.83 1.36 2.22
NE 0 0 0 0 0 0 0 0 0 0.06 0.11 0.18 0.3 0.49 1.8 1.3 2.1

D2 S 0 0 0.1 0.4 2.5 16 98 671
NF 0 0 0 0 0 0 0 0 0 0 0.07 0.19 0.32 0.51 0.83 1.36 2.23
NE 0 0 0 0 0 0 0 0 0 0.6 0.11 0.18 0.3 0.49 0.8 1.32 2.17

D3 S 4.3 157
NF 0 0 0 0.08 0.14 0.35 0.76 1 3 6 12 24 45 82 155 286 580
NE 0 0 0 0.08 0.13 0.32 0.68 1.3 3 6 11 22 42 79 150 280 586

S1 S 0 0 0 0 0 0 0 0 0.10 0.2 0.3 0.8 1.7 3.6 7.8 17 36
NF 0 0 0 0 0 0 0 0 0 0 0.6 0.08 0.11 0.15 0.21 0.27 0.35
NE 0 0 0 0 0 0 0 0 0 0 0.06 0.08 0.11 0.15 0.2 0.27 0.36

S2 S 0 0 0 0 0 0.1 0.1 0.2 0.5 1.1 2.5 5.5 12 28 61 135 292
NF 0 0 0 0 0 0 0 0 0 0 0 0.05 0.07 0.1 0.13 0.18 0.23
NE 0 0 0 0 0 0 0 0 0 0.06 0.08 0.11 0.15 0.19 0.25 0.33 0.44

S3 S 0 0 0 0 0.1 0.1 0.2 0.4 0.9 2.2 5.1 12 26 59 136 311 708
NF 0 0 0.05 0.08 0.13 0.2 0.32 0.48 0.73 1 1.5 2.2 3.2 4.5 6.4 8.9 12
NE 0 0 0 0.05 0.08 0.12 0.18 0.27 0.4 0.57 0.83 1.1 1.6 2.2 3.2 4.3 5.7

Table 1: QuickCheck’s benchmark: S for smart generators, 0 for time < 50 ms, empty cells for timeout
after 1h.

Table 2 5.1 shows the run time to validate those (true) properties w.r.t. a correct implementation up to
a given size (25), that in our case we interpret as depth-bound. We extrapolated from Table 2 in [4] the S
(for smart generator) rows. (We omit the results for exhaustive and narrowing-based testing; the point of
their inclusion in [4] was to show how smart generation outperforms the latter two over checks with hard-
to-satisfy premises.) The fact that we are so largely superior is probably due to smart generation trying
to replicate in a functional setting what logic programming naturally offers. Note however that tests in
Isabelle/QuickCheck are efficiently run by code generation at the ML level, while our bounded solver is

6 Run your research, mind the binders

just a non-optimized logic programming interpreter – to name one, it does not have yet first-argument
indexing.

Here NE somewhat outperforms NF, in part because the negated predicates (distinct,sorted etc.)
are fairly simple, in part because it does not require extensional quantification. One could conjecture that
mode information, which is a central ingredient in smart generation, may help to reduce some of NF’s
excessive term generation burden, as in D3. Anecdotal evidence, which needs to be investigated further,
suggests instead that it may not yield a net gain in our setting. For example, mode information will
dictate this version of S2, where sortedm is modified to be grounding:

S2m: sortedm(Xs),gen_nat(X),insert(X,Xs,Ys) => sortedm(Ys).

This happens to be in our tool under NF much slower over S2 – 16 seconds over 0.7.

5.2 Security Type Systems

To compare Nitpick with our approach, we selected a case study mentioned in [3]: an encoding of the
Volpano, Irvine and Smith [16] security type system, whereby the basic imperative language IMP is
endowed with a type system that prevents information flow from private to public variables.3 Blanchette
and Nipkow reports that by inserting a mutation in the typing rule for command sequencing, they get a
counterexample to the crucial non-interference property.

For our test, we actually selected the more general version of the type system formalized in [13],
where the security levels are generalized from high and low to natural numbers. Given a fixed assignment
sec of such security levels to variables, then lifted to arithmetic and booleans expressions, the typing
judgment l ` c reads as “command c does not contain any information flow to variables lower then l
and only safe flows to variables ≥ l. We show a selection of the rules, where the over-strike denotes the
inserted mutation.

sec a≤ sec x l ≤ sec x

l ` x := a

l ` c1 ���XXXl ` c2

l ` c1;c2

max (sec b l) ` c1 max (sec b l) ` c2

l ` IF b T HEN c1 ELSE c2

The properties of interest relate states that agree on the value of each variable below a certain security
level, denoted as σ1 ≈≤ l σ2 (resp. σ1 ≈< l σ2) iff ∀x. sec x ≤ l → σ1(x) = σ2(x) (resp. <). Given a
standard big-step evaluation semantics for IMP, relating an initial state σ and a command c to a final
state τ:

Confinement If 〈c,σ〉 ↓ τ and l ` c then σ ≈< l τ;

Non-interference If 〈c,σ〉 ↓ σ ′, 〈c,τ〉 ↓ τ ′, σ ≈≤ l τ and 0 ` c then σ ′ ≈≤ l τ ′;

Differently from the Isabelle/HOL mostly functional setting, our encoding is fully relational, where,
for example, states and security assignments cannot be seen as partial functions but are reified in asso-
ciation lists. We also pay a price in not being able to rely on built-in types such as integers, but have to
deploy our clearly inefficient versions. Finally, this case study does not exercise binders intensely, as we
are only using nominal techniques in representing program variables as names and freshness to guaran-
tee well-formedness of states and of the table encoding the variable security settings. Nevertheless, the
experimental evidence is quite pleasing, as we sum up in Table 2: our tool finds very quickly this coun-
terexample to confinement, where c is (SKIP ;x := 1), sec x = 0, l = 1 and σ maps x to 0. This would not
hold were the typing rule to check the second premise. A not too dissimilar counterexample falsifies non-
interference: c is (SKIP ;x := y), sec x,y = 0,1, l = 0 and σ maps y to 0 and x undefined (i.e. to a logic

3We readily acknowledge that this is quite trivial, compared to much more in-depth experiments such as [10].

Cheney, Momigliano & Pessina 7

variable), while τ maps y to 1 and keeps x undefined. Compare it to Nitpick, which, using the following
settings nitpick params[sat solver=MiniSat JNI,max threads=1,check potential] finds (x
:= -1 + y; y := -1 + y) as a confinement bug fairly quickly. However, it warns that it could be spurious,
and the auto tactic is unable to rule it genuine. Secondly, Nitpick fails to deal with non-interference due
to the standard problem that “the conjecture lies outside Nitpick’s supported fragment”, meaning that the
evaluation relation cannot be proven well-founded (and rightly so), requiring therefore its problematic
unrolling.

Check Nitpick NF NE NE−

Confinement 0.6 0.04 0.04 0.03
Non-interference timeout 9.46 0.32 0.29

Table 2: The VIS case study: time out at 30 secs, max depth 5 (for confinement) and 8 (for non-
interference)

5.3 Head-to-Head with PLT-Redex

bug# class description cex
1 S as in Sec 2 hd 0
2 M (cons v) v value has been omitted (cons 0) nil
3 S swap of order of types in function pos of app (λx:int. cons) cons
4 S type of cons is incorrect not found
5 S tail reduction returns the head tl ((cons 1) nil))
6 M hd reduction acts on partially applied cons (hd ((cons 1) nil)))
7 M no evaluation rhs of app 1 + (2 + 3)
8 U lookup always returns int (λx:ilist. cons x) nil
9 S vars may not match in lookup (λx:int. λy:ilist x) 1)

Table 3: Stlc benchmark list

Here we report our results in checking the rest of the mutations mentioned in http://docs.racket-lang.
org/redex/benchmark.html w.r.t. the calculus of Section 2 and listed in Table 3. This lists the muta-
tion with a “difficulty” rating (Simple/Medium/Unusual) and the smallest expressions, found by Redex,
that falsifies preservation or progress.

The two encodings are somewhat different: Redex has very good support for evaluation contexts,
while we use congruence rules. Being untyped, the Redex econding treats error as a string, which is
then procedurally handled in the statement of preservation and progress, whereas for us it is part of the
language. Since [11] Redex allows the user to write judgments such as typing in a declarative style akin
to Ott’s style [14], provided they can be given a functional mode, but slightly more complex systems,
such as typing rule for a polymorphically version of a similar calculus, require very indirect encoding,
e.g. CPS-style. We do not model addition on integers, as we currently require our code to be pure in the
logical sense, i.e. no appeal to built-in arithmetics, as opposed to Redex that maps integers to Racket’s
ones. This is why we cannot find bug 4, which requires integers to be used and not just built. W.r.t. lines of
code, our encodings is roughly 1/4 of Redex’s, not counting Redex’s built-in generators and substitution
function. The adopted checking philosophy is also somewhat different: they choose to test preservation

http://docs.racket-lang.org/redex/benchmark.html
http://docs.racket-lang.org/redex/benchmark.html

8 Run your research, mind the binders

and progress together, using a cascade of three built-in generators and collect all the counterexamples
found within a timeout of n seconds. Redex response is very quick, in this benchmark under 1 second.

While our performances, as shown in Table 2 5.3 could be better, we basically catch the same bugs
with very similar counterexamples. Bugs 8 and 9 can also be caught by checking the substitution lemma:
x # (G,E),tc(G,E,T),tc([(x,T)|G],E’,T’),valid_ctx(G) => tc(G,subst(E’,x,E),T’).

showing the usefulness of testing intermediate results. In conclusion, we’d like to point out that the
above mutations, as witnessed by Redex’s counterexamples, do not exercise binders that much, especially
compared to some of the case studies in [11]. This probably explains why Redex’s built-in generators
are here surprisingly effective, although they do not discriminate between free or bound variables, nor
do they produce well-typed terms as we do by construction. This seems to suggest that the typing rules
are not exercised in depth. Finally, the fact that random testing without shrinking finds roughly the same
counterexamples as exhaustive search suggests that this benchmark is not too meaningful and that a
harder case study is required.

bug# check NF NE− cex
1 pres 0.3 1.46 (λx:ilist. x err) n

prog 0 3.89 as Redex
2 prog 0.29 as Redex
3 pres 0 0 (λx:ilist. n) n

prog 0 4.39 as Redex
5 pres 5.77 23.2 as Redex
6 prog 29.8 as Redex
7 prog 0.9 hd ((λx:int. error) n)
8 pres 0.1 0.1 (λx:ilist. x) nil
9 pres 0.1 0.1 (λx:int. y) n

Table 4: αCheck results on Stlc benchmarks. Timeout 30 sec, smallest cex shown.

6 Conclusions and Future Work

This work-in-progress paper presents case studies comparing Isabelle’s QuickCheck/Nitpick, PLT Re-
dex, and αCheck. Our experiments support a preliminary conclusion that our approach has advantages
compared to the competition in terms of the amount of work required to represent and check a system
correctly (taking binding into account) and does not pay a terrible price in terms of speed, notwith-
standing being largely unoptimized. On the other hand, αCheck has some clear limitations compared
to these systems: for example, QuickCheck/Nitpick’s embedding in Isabelle/HOL supports both proof
and checking of the same specification in an integrated way, and as part of the Racket ecosystem Redex
supports among others operational semantics animation, sophisticated documentation generation and ef-
ficient compilation of tests. We have also not yet performed a detailed comparison with Bedwyr, which
appears to be the closest in terms of the underlying technology.

Despite its incompleteness, performing this comparison has been valuable to us, particular in iden-
tifying bugs and limitations in αProlog and its checking facilities. We conclude by listing some future
directions, both for our own goal of developing αCheck into a serious tool for mechanized meta-theory
exploration and for empirical research about such tools generally.

Cheney, Momigliano & Pessina 9

• Combining performance and usability. There appear to be opportunities to improve the perfor-
mance of negation elimination. αCheck is still not easy to use correctly, and checks sometimes
need to be written differently depending on whether NF or NE is used.
• Integration. We have resisted the temptation to complicate αCheck with document generation

or theorem proving capabilities, contrasting with more monolithic tools such as Redex or Is-
abelle/HOL. Bidirectional transformations (bx) [8] could be useful for synchronizing specifica-
tions among multiple specialized tools.
• Benchmarking. Previous publications on property-based testing for mechanized meta-theory (in-

cluding our own) have generally not been accompanied by detailed enough descriptions of exper-
imental methodology to ensure reproducibility. Developing a suite of benchmark/challenge prob-
lems and standards for reporting results would, we hope, help clarify the strengths and weaknesses
of different approaches and guide future research towards improvements.

References

[1] David Baelde, Andrew Gacek, Dale Miller, Gopalan Nadathur & Alwen Tiu (2007): The Bedwyr System for
Model Checking over Syntactic Expressions. In Frank Pfenning, editor: CADE, LNCS 4603, Springer, pp.
391–397. Available at http://dx.doi.org/10.1007/978-3-540-73595-3_28.

[2] Jasmin Christian Blanchette, Lukas Bulwahn & Tobias Nipkow (2011): Automatic Proof and Disproof in Is-
abelle/HOL. In Cesare Tinelli & Viorica Sofronie-Stokkermans, editors: FroCoS, Lecture Notes in Computer
Science 6989, Springer, pp. 12–27. Available at http://dx.doi.org/10.1007/978-3-642-24364-6_2.

[3] Jasmin Christian Blanchette & Tobias Nipkow (2010): Nitpick: A Counterexample generator for higher-
order logic based on a relational model finder. In M. Kaufmann & L. Paulson, editors: Interactive Theorem
Proving (ITP 2010), LNCS 6172, Springer, pp. 131–146.

[4] Lukas Bulwahn (2012): Smart Testing of Functional Programs in Isabelle. In Nikolaj Bjørner & Andrei
Voronkov, editors: LPAR, Lecture Notes in Computer Science 7180, Springer, pp. 153–167. Available at
http://dx.doi.org/10.1007/978-3-642-28717-6_14.

[5] James Cheney & Alberto Momigliano (2007): Mechanized metatheory model-checking. In Michael Leuschel
& Andreas Podelski, editors: PPDP, ACM, pp. 75–86. Available at http://doi.acm.org/10.1145/
1273920.1273931.

[6] James Cheney & Christian Urban (2008): Nominal Logic Programming. ACM Transactions on Programming
Languages and Systems 30(5), p. 26.

[7] Koen Claessen & John Hughes (2000): QuickCheck: a lightweight tool for random testing of Haskell pro-
grams. In: Proceedings of the 2000 ACM SIGPLAN International Conference on Functional Programming
(ICFP 2000), ACM, pp. 268–279.

[8] Krzysztof Czarnecki, J. N. Foster, Zhenjiang Hu, Ralf Lämmel, Andy Schürr & James F. Terwilliger (2009):
Bidirectional Transformations: A Cross-Discipline Perspective. In: ICMT, LNCS 5563, pp. 260–283.

[9] Robert Bruce Findler, Casey Klein & Burke Fetscher (2015): Redex: Practical Semantics Engineering.

[10] Catalin Hritcu & co authors (2013): Testing Noninterference, Quickly. In: ICFP, ACM, pp. 455–468.

[11] Casey Klein & co authors (2012): Run your research: on the effectiveness of lightweight mechanization. In:
Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL ’12, ACM, pp. 285–296. Available at http://doi.acm.org/10.1145/2103656.2103691.

[12] Alberto Momigliano (2000): Elimination of Negation in a Logical Framework. In Peter Clote & Helmut
Schwichtenberg, editors: CSL, Lecture Notes in Computer Science 1862, Springer, pp. 411–426. Available
at http://link.springer.de/link/service/series/0558/bibs/1862/18620411.htm.

[13] Tobias Nipkow & Gerwin Klein (2014): Concrete Semantics - With Isabelle/HOL. Springer.

http://dx.doi.org/10.1007/978-3-540-73595-3_28
http://dx.doi.org/10.1007/978-3-642-24364-6_2
http://dx.doi.org/10.1007/978-3-642-28717-6_14
http://doi.acm.org/10.1145/1273920.1273931
http://doi.acm.org/10.1145/1273920.1273931
http://doi.acm.org/10.1145/2103656.2103691
http://link.springer.de/link/service/series/0558/bibs/1862/18620411.htm

10 Run your research, mind the binders

[14] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit Sarkar & Rok
Strnisa (2010): Ott: Effective tool support for the working semanticist. J. Funct. Program. 20(1), pp. 71–122,
doi:http://dx.doi.org/10.1017/S0956796809990293.

[15] Christian Urban & Cezary Kaliszyk (2012): General Bindings and Alpha-Equivalence in Nominal Isabelle.
Logical Methods in Computer Science 8(2), doi:10.2168/LMCS-8(2:14)2012.

[16] Dennis Volpano, Cynthia Irvine & Geoffrey Smith (1996): A Sound Type System for Secure Flow Analysis.
J. Comput. Secur. 4(2-3), pp. 167–187.

http://dx.doi.org/http://dx.doi.org/10.1017/S0956796809990293
http://dx.doi.org/10.2168/LMCS-8(2:14)2012

	Introduction
	A Brief Tour of the Checker
	System Architecture
	Related Work
	Case Studies
	Basic Properties of Lists
	Security Type Systems
	Head-to-Head with PLT-Redex

	Conclusions and Future Work

