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Abstract. CooML is an object-oriented modeling language where specifications
are theories in a constructive logic designed to handle incomplete information.
In this logic we view snapshots as a formal counterpart of object populations,
which are associated with specifications via the constructive interpretation of log-
ical connectives. In this paper, we introduce the “snapshot semantics” of CooML
and we describe a snapshot generation (SG) algorithm, which can be applied to
validate specifications in the spirit of OCL-like constraints over UML models.
Differently from the latter and from the standard BHK semantics, the logic al-
lows us to exploit a notion of partial validation that is appropriate to encodings
characterised by incomplete information. SG is akin to model generation in an-
swer set programming. We show that the algorithm is sound and complete so that
its successful termination implies consistency of the system.

1 Introduction

We are developing the constructive object-oriented modeling language CooML [19]
(http://cooml.dsi.unimi.it), a specification language for OO systems. Sim-
ilarly to UML/OCL [23], CooML provides a framework for the design of system spec-
ifications in the early stages of the development process. The language allows the user
to distinguish between internally defined elements and the problem domain, which may
involve loosely or incompletely defined components. This encourages the selection of
the appropriate level of abstraction w.r.t. specifications.

CooML follows the spirit of lightweight formal methods [10]: it does not focus on
full formalization, nor on whole system correctness, but emphasizes partiality in anal-
ysis and specification. In particular, in the context of OO modeling, both the validation
of a specification and the check of its consistency can be achieved via the notion of
snapshot, i.e. a population of objects in a given system state that satisfies the specifi-
cation. Previous work has used snapshots for validation of UML/OCL models [8] and
specifications in JML [4].

The novelty of CooML’s approach resides in its semantics, which is related to the
constructive explanation of logical connectives (a.k.a. the BHK interpretation [22]).
Specifically, the truth of a CooML proposition in a given interpretation is explained by
a mathematical object that we call an information term. For the time being, the latter can
be visualized as a sort of proof term inhabiting a type/formula. The underlying logic is
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characterized by how classical and constructive information co-exists, the main “entry”
point being the different way in which an atomic formula A is given evidence (for more
details we refer the kind reader to the original formulation of the logic in [15]). If we call
the pair I : P a piece of information, where P is a formula and I is its information term,
then I : P may be true or false in a classical interpretation w, called a world. Thus, we
have a notion of a model of a piece of information based on classical logic. In particular,
we use T{F} to indicate the truth of F ; in fact, T does not contain evidence for F , but it
yields a trivial piece of information true in all the models of F . This introduces a novel
and flexible way to handle incomplete information, a notorious difficulty in information
systems such as relational databases.

Crucially, the constructive side of the logic allows the identification of snapshots
with information terms, thus providing a formal counterpart to the intuitive notion of
object populations. We argue that CooML’s proof-theoretic snapshot generation may
be advantageous in comparison to a model-theoretic one, especially in cases where not
all the information required to define a model is even present. The possibility of treat-
ing information in this less committed way means that we can select only the relevant
information; this may have a cascade of benefits in terms of conciseness of the repre-
sentation.

The contributions of this paper are twofold. First, we extend the semantics developed
in purely logical terms in [15] to object oriented modeling languages. We regard an OO
system specification as a CooML theory T , the system snapshots as the pieces of in-
formation I : T , and the related information content as a suitable set of formulae. We
show that the latter can be seen as the minimum information needed to give evidence to
snapshots and we relate that to snapshot consistency. Secondly, we describe (and imple-
ment) a snapshot generation algorithm (SGA), taking as inputs: (i) a CooML theory T ,
axiomatizing a set of classes in a problem domain PD; (ii) the user’s generation require-
ments G – they serve an analogous purpose of domain predicates in the grounding phase
of ASP’s [17]. As snapshots should be consistent with respect to PD and G , we prove
that consistency checking is sound and that snapshot generation is complete, i.e. if a
consistent snapshot satisfying the generation requirements exists, it will be generated.
This is loosely connected to adequacy results in the theory of CLP’s [7].

2 CooML Specifications

In this section we informally present the language via an example (adapted from [3]),
while we defer the formal exposition to Section 2.1. The problem domain concerns a
small coach company. Each coach has a specified number of seats and can be used
for regular or private trips. In a regular trip, each passenger has its own ticket and seat
number. In a private trip, the whole coach is rented and there may be a guide. The corre-
sponding CooML specification is contained in the package coachCompany (Fig. 1).
To explain our example we need to introduce CooML types system. We distinguish
among data types (in our example, Integer and Boolean), PD types (Person),
and object types (Coach, Trip, Passenger). They all inherit from the top type
Value the identity relation and the string representation. Data types are “statically”
defined, i.e., their values do not depend on the current state. CooML assumes the



Snapshot Generation in a Constructive Object-Oriented Modeling Language 171

package coachCompany;
pds{type Person;

Integer numberOfSeats(Coach c) = (* the number of seats of c *);
Boolean guides(Person p, Trip t) = (* p guides trip t *);
Boolean nobooking(Passenger p, Trip t) = (* p has no booking in t *);
Boolean vacant(Integer s, Coach c, Trip t) =

(* s is a vacant seat on c in t *);
Boolean booked(Passenger p, Integer s, Coach c, Trip t) =

(* p has booked seat s on c in t *);
<constr name=bookingConstraints language=prolog>

false :- vacant(S,C,T), booked(_P,S,C,T).
false :- booked(P1,S,C,T), booked(P2,S,C,T), not(P1==P2).
false :- nobooking(P,T), booked(P,_Seat,_Coach,T).

</constr>
}

class Coach{
coachPty: and{

seats: exi{Integer seatsNr; seatsNr = numberOfSeats(this)}
trips: for{Trip trip; trip is Trip(this) --> true} }

Integer getSeats(){ return seats.seatNr }
}

class Trip{ env(Coach coach)
TripPty: case{private: case{T{exi{Person p; guides(p,this)}}

T{not exi{Person p; guides(p,this)}}}
regular: for{Integer seat; (seat in 1..coach.getSeats()) -->

case{vacant: vacant(seat,coach,this)
booked: exi{Passenger p; T{and{p is Passenger(this)

booked(p,seat,coach,this)}}
}}}}}

class Passenger{ env(Trip trip)
PsngrPty: case{c1: nobooking(this,trip)

c2: exi{Integer seat, Coach coach;
T{and{trip is Trip(coach)

booked(this,seat,coach,trip)}}
}}}

Fig. 1. The coachCompany package

existence of an implementation that evaluates ground terms to values. A PD type ex-
tends Value with a set of problem domain functions.

Nothing is assumed about PD types; they may be characterized by a set of formal or
loose properties that we call PD constraints, introduced by the tag <constr>.

The special subtype Obj of Value introduces object identities. Objects are created
by CooML classes, which are structured in a single inheritance hierarchy rooted in Obj.
The definition of a class C may depend on some environment parameters; namely C(e)
is a class with environment parameters e. If e is a ground instance of the environment
parameters e, then C(e) can be used to create new objects. We write “o is C(e)” to
indicate that o has been created by C(e), while “o instanceof C(e)” means that
o has environment e and has been created by a subclass C’ of C. We call those class
predicates.
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In a package: (i) data types are assumed to be externally implemented; (ii) PD types
are defined in the pds (problem domain specification) section; (iii) classes are intro-
duced by suitable class declarations.

pds declaration and world states. The pds section specifies our general knowl-
edge of the problem domain. It introduces PD types, functions and predicates using
data and class types. In our example we introduce the PD type Person and func-
tions numberOfSeats, guides, . . . The informal descriptions (*...*) use terms
of the global signature provided by the analysis phase [11]. A <constr> declara-
tion introduces a set of PD constraints representing general problem domain proper-
ties that are not interpreted by CooML, but possibly by some external tool. In the ex-
ample, PD constraints are expressed in Prolog assisting the SG algorithm in filtering
out undesired snapshots. The class predicate “o is C(e)” is represented by the Pro-
log predicate isOf(o, C, [e]), while “o istanceOf C(e)” is translated into
instanceOf(o,C, [e]). The first constraint says that a coach seat cannot be vacant
and booked at the same time, the second one excludes overbooking (a seat can be booked
by at most one person), while the third says that the predicatenobooking(P,T)holds
if person P has not booked a seat on the coach associated with trip T. In this paper, we
assume that the signature ΣT of a CooML theory T (including PD types, data types and
classes) is first order and that we can represent the possible states of the “real world”
by reachable ΣT -interpretations, dubbed world states. Reachability means that each el-
ement of the interpretation domains is represented by some ground terms, in our case
CooML values. In a world state, PD symbols are interpreted over the external world,
data types are interpreted according to their implementation, and class predicates rep-
resent the current system objects. For instance the class predicates
mini is Coach(), t1 is Trip(mini), t2 is Trip(mini), t3 is Trip(mini),
john is Passenger(t1)

represent a small company with a single mini-bus mini, three trips t1,t2,t3 operated
by mini and, so far, only one passenger john associated with trip t1.

class declarations and properties. A class declaration introduces the name C of
the class, its (possible) environment parameters e, its property PtyC(this, e), and
its methods 1. An object o created by C(e) stores a piece of information structured
according to PtyC(o, e), and uses the methods implemented by C(e).

For class properties, CooML uses a prefix syntax, where formulas may be labeled.
Labels are used to refer to subformulae. For example, the label seats is used in the
getSeats method to refer to seatsNr. A class property P is an atomic formula
over ΣT , or (recursively) a formula of the form and{P1 . . . Pn}, case{P1 . . . Pn},
exi{τ x;P}, for{τ x;G→P} and T{P ext}, where P ext is a property that may also
use negation not and implication imp. We stress that not and imp cannot be used
outside T.

In CooML’s semantics, a property P defines a set of possible pieces of information
of the form I : P , where I is an information term, that is a structure justifying the truth
of P . Each piece of information I : P has an information content, i.e. a set of simple
properties intuitively representing the minimum amount of information needed to justify
P according to I . A simple property is either an atom or of the form T{P ext}. A simple
property S represents a basic information unit, i.e., it has a unique information term tt

1 We use the self-reference this as in Java.
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where tt is a constant. This means that the only information we have is the truth of S,
and that the associated information content is simply the set {S}. Exemplifying,

tt : t1 is Trip(mini)

has information content {t1 is Trip(mini)} and means that the trip t1 is as-
signed to the coach mini in the current world state.

The operator T may enclose a complex property P and indicates that we are inter-
ested only in its truth. Let us consider

tt: T{exi{Person p; guides(p,t2)}} tt: T{not exi{Person p; guides(p,t3)}}

The first piece of information says that t2 is a guided trip without indicating who the
guide is; the second one says that t3 has no guide.

By default 2 the truth of a simple property S in a world state w (denoted w |= S) is
defined as in classical logic, by ignoring T (i.e., w |= T{P} iff w |= P ) and interpret-
ing case as ∨, and as ∧, not as ¬, imp as →, exi as ∃ and for{τ x;G(x)→P (x)}
as ∀x(G(x) → P (x)).

In contrast, non-simple properties are interpreted constructively, by means of infor-
mation terms. A piece of information I : P may have one of the following forms:

Existential. (x,I):exi{τ x; P (x)}, where τ is the type of the existential variable
x. The term x is a witness for x and the information content is the one of I : P (x). For
example,

(4,tt) : exi{Integer seatNr; seatNr = numberOfSeats(mini)}

has witness 4 and information content {4 = numberOfSeats(mini)}, signifying
that our mini-bus has 4 passenger seats. Note that, differently from the case of simple
properties, we know the value of x that makes P (x) true.

Universal. ((x1, I1),...,(xn, In)):for{τ x; G(x) → P (x)}, where G(x)
is an x-generator, i.e. a formula true for finitely many x 3. The information con-
tent is the union of those of I1 : P (x1), . . . , In : P (xn) and of the domain
property dom(x; G(x); [x1,...,xn]), a special simple property interpreted as
∀x(G(x) ↔ member(x, [x1, . . . ,xn])). For example, the information content of

((t1,tt),(t2,tt),(t3,tt)) : for{Trip trip; trip is Trip(mini) → true}

is {dom(trip; trip is Trip(mini); [t1,t2,t3])}, showing that the
domain of the trip-generator “trip is Trip(mini)” is {t1,t2,t3}. Since
the atomic formula true corresponds to no information, it can be ignored.

Conjunctive. (I1, . . . , In) : and{P1 . . . Pn}. The information content is the union of
those of Ij : Pj , for all j ∈ 1..n. For instance, a piece of information for the class
property coachPty(mini) and the related information content IC1 is

((4,tt), ((t1,tt), (t2,tt), (t3,tt))) : and{seats(mini) trips(mini)}
IC1 = {4 = numberOfSeats(mini), dom(trip; trip is Trip(mini); [t1,t2,t3])}

2 But one can change this, although we do not discuss it for lack of space.
3 We omit here the precise syntax of generators.



174 M. Ferrari et al.

Disjunctive. (k,Ik):case{P1 . . . Pn}. The selector k ∈ 1..n points to the true
subformula Pk and the information content is Ik : Pk’s. For example, if the object
john with class predicate john is Passenger(t1) contains the information
term (1,tt), then

(1,tt) : case{c1:nobooking(john,t1) c2: ...}

selects the first sub-property of PsngrPty, with information content {nobooking
(john,t1)}, i.e. john has no booking in trip t1 in the current state.

The information content of classes. Let C(e) be a class with property
PtyC(this, e). We associate with C the class axiom

clAx(C): for{Obj this, τ e; this is C(e) → PtyC(this, e)}

The corresponding pieces of information and information content are those for universal
properties. The piece of information for class Coach and its information content IC2
is:

((mini,CoachInfo)) : for{Obj this; this is Coach() → coachPty(this)}
IC2 = {dom(this; this is Coach();[mini]), 4 = numberOfSeats(mini),

dom(trip; trip is Trip(mini); [t1,t2,t3])}

where CoachInfo:coachPty(mini) is defined as in the conjunctive case.

System snapshots and their information content. Let P be a package introducing a
set of constraints T and the CooML classes C1, . . . , Cn. We associate with P a CooML
theory TP = 〈thAx, T 〉, where thAx = and{clAx(C1) · · · clAx(Cn)}.

A piece of information I : thAx represents the information content of the whole
system. We call it a system snapshot, to emphasise that the system may evolve through a
sequence I0 : thAx, . . . , In : thAx, . . . . A snapshot for our coachCompany system
is of the form:

(I1,I2,I3) : and{clAx(Coach) clAx(Passenger) clAx(Trip)}

and possible information terms I1, I2, I3 are

I1 = ((mini,CoachInfo)), I2 = (([john,t1],(1,tt)), ([ted,t2],(1,tt)))
I3 = (([t1,mini],(2,((1,tt), (2,(john,tt)),(3,(1,tt)),(4,(1,tt))))),

([t2,mini],(1,(1,tt))),
([t3,mini],(1,(2,tt))))

where [...] denote tuples. A relevant part of the information content for
coachCompany is given in Fig. 2.

The above information content could be seen as an “incompletely specified”
model of the coachCompany theory, where numberOfSeats, nobooking,
vacant, booked and class predicates are completely specified, while for guides
we have only some partial knowledge, expressed by the T-properties, and moreover
nothing is said about Person. The relationship with classical models can be bet-
ter explained by comparing the constructive and classical reading of CooML properties.
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dom(o; o is Coach(); [mini]), dom(o; o is Trip(mini); [t1,t2,t3]),
dom([o,t]; o is Passenger(t); [[john,t1],[ted,t2]]),
dom([o,c]; o is Trip(c); [[t1,mini],[t2,mini],[t3,mini]]),
4=numberOfSeats(mini), nobooking(john,t1), vacant(1,mini,t1),
booked(john,2,mini,t1), vacant(3,mini,t1), vacant(4,mini,t1),
T{exi{Person p; guides(p,t2)}}, T{not exi{Person p; guides(p,t3)}}

Fig. 2. Part of the information content of coachCompany

Let T = 〈thAx, T 〉 be a CooML theory. We can switch to the classical interpreta-
tion of thAx simply by using the T operator, i.e. by considering the simple property
T{thAx}. One can prove that T{thAx} has a reachable model if and only if so does
IC(I : thAx), for at least one piece of information I : thAx. Furthermore, one can
prove that IC(I : thAx) is the minimum set of simple formulas that justifies I as an
explanation of thAx.

In this context we are mainly interested in the notion of consistency with respect
to the PD constraints, assuming that the latter can be interpreted as first order sen-
tences. In our example, we interpret a program clause H : −B1, . . . , Bn as the uni-
versal closure of B1 ∧ . . . ∧ Bn → H , as usual. A system snapshot I : thAx for
a theory T = 〈thAx, T 〉 is consistent if its information content IC(I : thAx) is
true in a reachable classical model of T ; T is consistent if there is a consistent snap-
shot for it. For example, the above snapshot (I1, I2, I3) is consistent with respect to
the first and second constraint of the pds section, but not with the third, since both
nobooking(john,t1) and booked(john,2,mini,t1) belong to the infor-
mation content of coachCompany (Fig. 2).

2.1 Formal Definitions

Let T = 〈thAx, T 〉 be a CooML theory and ΣT the associated first order signature.
The set of information terms for a property P , IT(P ), is inductively defined as follows,
where x stands for values of x of the appropriate type:

IT(P ) = {tt }, if P is simple
IT(and{P1 · · · Pn}) = { (I1, . . . , In) | Ij ∈ IT(Pj) for all j ∈ 1..n }
IT(case{P1 · · · Pn}) = { (k, I) | 1 ≤ k ≤ n and I ∈ IT(Pk) }
IT(exi{τ x; P}) = { (x, I) | I ∈ IT(P ) }
IT(for{τ x; G(x) →P }) = { ((x1, I1), . . . , (xn, In)) | Ij ∈ IT(P ) for all j ∈ 1..n }

A piece of information for a closed property P is a pair I : P , with I ∈ IT(P ). A
collection is a set of closed simple properties. The information content IC(I : P ) is the
collection inductively defined as follows:

IC(tt : P ) = {P}, where P is a simple property
IC( (I1, . . . , In) : and{P1 · · · Pn} ) =

⋃n
j=1 IC(Ij : Pj)

IC( (k, I) : case{P1 . . . Pn} ) = IC(I : Pk)
IC( (x, I) : exi{τ x; P (x)} ) = IC(I : P (x))
IC(((x1, I1),. . . , (xn, In)) : for{τ x; G(x)→P (x)} ) =

⋃n
j=1 IC(Ij : P (xj))

∪ { dom(x; G(x); [x1, . . . ,xn]) }
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The information content IC(I : P ) represents the minimum amount of information
needed to get evidence for P according to I . We say that a collection C gives evidence
to I : P , and we write C � I : P , iff one of the following clauses holds:

C � tt : P iff P ∈ C
C � (I1, . . . , In) : and{P1 · · · Pn} iff C � Ij : Pj for all j ∈ 1..n
C � (k, I) : case{P1 . . . Pn} iff C � I : Pk

C � (x, I) : exi{τ x; P (x)} iff C � I : P (x)
C � ((x1, I1),. . . , (xn, In)) :for{τ x; G(x)→P (x)} iff dom(x; G(x); [x1, . . . ,xn]) ∈ C

and C � Ij : P (xj) for all j ∈ 1..n

The information content IC(I : P ) represents an information about the current world
state. We define the information content of C as its closure under (classical) logical
consequence, for C ∗ = {P | C |= P}. We say that C 1 contains less information than
C 2 (written C 1 � C 2 ) iff C ∗

1 ⊆ C ∗
2. Intuitively, the definition of � is justified by

the fact that an user will “trust” C ∗, whenever he trusts C . We could use a different
trust-relation, considering different logics. We only need this to hold:

(1). C ⊆ C ∗;
(2). C 1 ⊆ C ∗

2 implies C 1 � C 2.

Using the above properties, we can establishes the minimality of IC(I : P ) with respect
to �:

Theorem 1. Let I : P be a piece of information:

1. IC(I : P ) � I : P
2. For every collection C , C � I : P implies IC(I : P ) � C .

Now we can apply the above discussion to the problem of checking snapshots against
constraints. Let T = 〈thAx, T 〉 be a CooML theory. We recall that a snapshot for
T is a piece of information I : thAx. We introduce two notions of consistency for
snapshots.

– A snapshot I : thAx is consistent with respect to the constraints T (T -consistent)
iff there exists a reachable model of IC(I : thAx) ∪ T .

– T is snapshot-consistent iff there is at least one snapshot I : thAx such that I :
thAx is T -consistent.

The latter definition is related to classical consistency by the following result:

Theorem 2. Let T = 〈thAx, T 〉 be a CooML theory. T is snapshot-consistent iff there
is a reachable model of T{thAx} ∪ T .

3 A Snapshots Generation Algorithm and Its Theory

A snapshot generation algorithm (SGA) for a CooML theory T = 〈thAx, T 〉 takes
as input the user’s generation requirements and tries to produce T -consistent snap-
shots that satisfy such requirements. Roughly, generation states represent incomplete
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snapshots, i.e. in logic programming parlance, partially instantiated terms; inconsistent
attempts are pruned, when recognized as such during generation.

Consistency checking plays a central role. It depends on the PD logic and it is dis-
cussed next. In Subsection 3.2 we illustrate the use of snapshot generation for validating
CooML specifications. Finally, in Subsection 3.3 we briefly outline a non deterministic
algorithm based on which one may develop sound and complete implementations.

3.1 Consistency Checking

Here we briefly discuss a simplified version of consistency checking in our Prolog im-
plementation, called SnaC. To recognize inconsistent attempts, SGA uses an internal
representation of the information content of the current generation state S, denoted by
INFOS . Let PS be the internal Prolog translation of the information content INFOS . For
this simplified version, we assume that PS is executed by a suitable meta-interpreter.
Without giving the formal details, we notice that INFOS consists either of ground facts,
clauses of the form H :- eq(t1,t2) or false :- B, where:

– We use eq to avoid Prolog’s standard unification interfering with Skolem con-
stants. Indeed, the latter represent unknown values originating from the translation
of T{exi{...}}, where different constants may represent the same value. In this
simplified account, the eq atoms are just residuated by the meta-interpreter in a list
of “unsolved equations”.

– The reserved atom false is adopted to detect inconsistency: its finite failure sig-
nals snapshot consistency, conversely, its success corresponds to inconsistency.

Clauses whose head isfalse are called integrity constraints and false may oc-
cur only as such. A SnaC representation PS has the following property: if the meta-
interpretation of a goal G succeeds from PS with answer σ and a list L of unsolved
equations, then Gσ is a logical consequence of PS ∪ L. Furthermore, consistency is
preserved and the models of PS are models of INFOS (in the declarative reading of
PS , where we interpret eq as equality and false as falsehood). As an example, let
us consider the SnaC representation PcComp in Fig. 3 of the information content of the
coachCompany package (Fig. 2).

isOf(mini,’Coach’,[]). false :- isOf(O,’Coach’,[]), not(member(O,[mini]).
isOf(john ’Passenger’,[t1]). isOf(ted ’Passenger’,[t2]). ...
numberOfSeats(mini,4). nobooking(john,t1). booked(john,2,mini,t1).
vacant(1,mini,t1). vacant(3,mini,t1). vacant(4,mini,t1).
guides(P,t2):- eq(P,p0).
false :- guides(P,t3).

Fig. 3. The SnaC representation PcComp

The facts and the constraint in the first lines come from the translation
of domain properties. For example, the first row contains the translation of
dom{o; o is Coach(); [mini])}. The other facts come from the transla-
tion of atoms. The clause guides(P,t2):- eq(P,p0) is the translation of
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T{exi{Person p; guides(p,t2)}}, where p0 is a fresh Skolem constant. Fi-
nally, false :- guides(P,t3) is the translation of T{not exi{Person p;
guides(p,t3)}}.

Let us analyse the three possible outcomes of consistency checking starting from the
example in Fig. 3:

(a) false finitely fails from the program PcComp. This entails that false does not
belong to the minimum model M of PcComp ∪ {eq(X,X)}. The latter contains
all the ground atoms in Fig. 3 as well as guides(p0,t2). Since M is a model
of PcComp, it is also a model of the information content of the coachCompany
package thanks to the properties of the translation.

(b) If we add to PcComp the constraint

c1) false :- nobooking(P,T), booked(P,_S,_C,T).

now the goal false succeeds from program PcComp∪{c1}, residuating the empty
list. This implies that the snapshot corresponding to the information content of
coachCompany is inconsistent w.r.t. c1.

(c) If we instead add the constraint

c2) false :- guides(P,T), isOf(P,’Passenger’,[T]).

the goal false succeeds from program PcComp ∪ {c2}, residuating
[eq(ted,p0)]. This implies that false belongs to the minimum model M
of PcComp ∪ {c2,eq(ted,p0)}. The equality eq(ted,p0) is returned to the
user as a source of inconsistency.

The above discussion is reflected in the following theorem:

Theorem 3. Let T = 〈thAx, T 〉 be a CooML theory, I : thAx a snapshot and P a
program containing the translation of IC(I : thAx) and of the PD constraints T .

1. If false finitely fails from P , then I : thAx is T -consistent.
2. If false succeeds from P residuating a set of constraints U , then I : thAx is

inconsistent with respect to T ∪ U .

In the first case, SnaC accepts I : thAx as a T -consistent snapshot. In the second, U
being empty signals inconsistency. If U is not empty, it is returned as an answer.

A more general result can be established admitting a larger class of simple properties
and PD constraints, via techniques similar to those used in CLP, such as constraint
systems [7]. Roughly, we can consider T as a program of a CLP system whose calculus
is an extension of the standard logic programming operational semantics and where the
constraint system is the Herbrand universe under CET, modified to deal with Skolem
constants.

3.2 Validating Specifications Via SG

One of the purposes of snapshot generation is understanding and validating a CooML
specification. To this aim, the user can specify suitable generation requirements in order
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to reduce the number of generated examples to a manageable size and show only the
aspects he is interested in. We explain the language of generation requirements and its
semantics through our example. It may be helpful to keep in mind the analogy with the
behaviour of an answer set program during grounding.

In the implementation, the number of generated snapshots can be limited by means
of the the special atom choice(A). This plays the role of domain predicates in ASP.
The SG algorithm will instantiate A according to its axiomatisation. For example:

choice(isOf(C,’Coach’,[])) :- member(C,[c1,c2]).
choice(isOf(P,’Passenger’,[T])) :- member(P,[anna,john,ted]).
choice(isOf(T,’Trip’,[C])) :- member((T,C), [(t1,c1),(t2,c2),(t3,c1)]).
choice(numberOfSeats(c1,3)).
choice(numberOfSeats(c2,60)).

instructs SG to generate one coach c1 with 3 seats and possible trips t1, t3, and
another c2 with 60 seats and trip t2. The declarative meaning of choice is given
by the axiom schema A → choice(A), which, together with the user definition of
choice, sets up the generation requirements. The generated snapshots will satisfy the
PD constraints, as well as the generation requirements.

Once the SG algorithm loads a CooML theory and the user generation requirements,
it can be queried with generation goals (G-goals). A sample G-goal is:

(g1) [ [3,tt], Trips ] : isOf(C,’Coach’,[]).

Since [3,tt]:seats(C) has information content 3 = numberOfSeats(C),
the query looks for the information Trips:trips(C) for every coach C with 3 seats.
More precisely, the G-goal includes both a generation goal (“generate all the coaches C
with 3 seats that satisfy the generation requirements”) and a query (“for each C, show
the information on the trips assigned to it”). An answer to g1 is:

Trips = [ [t1,tt] ] and C = c1

with information content

isOf(c1,’Coach’,[]), isOf(t1, ’Trip’, [c1])

The rest of the snapshot, including information terms for all classes in the package, is
omitted for the sake of space. If the user asks for more solutions, all possible snapshots
will be shown. In the above example, there are two more solutions, where c1 has two
trip assigned or none.

We now sketch some ways in which SG can be used in the process of system speci-
fication and development. This will be the focus of future work.

Validating specifications. The goal here is to show that a CooML theory “correctly”
models the problem domain. Validation is empirical by nature: it relates the theory to
the modeled world. The idea is to generate models that satisfy given generation re-
quirements and check whether they match the user expectations. To this aim, it is useful
to tune the generation requirements to consider separately various aspects that can be
understood within a small, “human viable” number of examples, as usual in this con-
text [8]. For instance, we may concentrate on the validation of the booking part of the
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CoachCompany package. In particular, we can find some supporting evidence of the
correctness of the specification in a match between the expected and actual number of
snapshots, where parameters of the latter are chosen as small as possible, while preserv-
ing meaningfulness. Naturally, snapshots can be used as inputs to tools for automatic,
specification-based testing generation, in the spirit of [18].

Partial and full model checking. As traditional in software model checking, here
the goal is to show that, under the assumptions of the generation requirements, no
snapshot satisfies an undesired property. This is obtained if the SGA finds a snapshot-
inconsistency, i.e. it halts without exhibiting any snapshot. Equivalently, one can prove
that every snapshot satisfies a given property by showing that its negation is snapshot-
inconsistent. We call this approach partial model checking, because in general snapshot
consistency may depend on the selection of generation requirements. We may perform
full model checking if the set of generated snapshots is representative of all models of
the theory w.r.t. the property under consideration.

3.3 A Schematic Algorithm

We now describe a general schema for the snapshot generation algorithm, of which
SnaC is just a first rough implementation. Let T = 〈thAx, T 〉 be a CooML theory,
where thAx = and{clAx(C1), . . . ,clAx(Cn)}. Its information terms are repre-
sented by sets of G-goals that we call populations. The generation process starts from a
set P0 of G-goals to be solved, i.e. to become ground. The SGA gradually instantiates
P0, possibly generating new G-goals. It divides the population in two separate sets:
TODO, containing the G-goals not solved yet and DONE, containing the solved ones.
A generation state has the form S = 〈DONE, TODO, CLOSED, INFO〉, where:

– CLOSED is a set of predicates closed(C, e), which is extended when all the ob-
jects with creation class C(e) have been generated. It prevents the creation of new
objects of class C(e) in subsequent steps.

– INFO is the representation in the PD language of the information content of DONE,
i.e. for every I : isOf(o, C, [e]) ∈ DONE, IC(I : PtyC(o, e)) ⊆ INFO.

The following definitions are in order:

– A state S is in solved form if TODO = ∅.
– Dom(S) = {isOf(o, C, [e]) | I : isOf(o, C, [e]) ∈ DONE ∪ TODO }.
– S1 � S2 for Si = 〈DONEi, TODOi, CLOSEDi, INFOi〉 iff

1. DONE1 ⊆ DONE2, Dom(S1) ⊆ Dom(S2) and INFO1 ⊆ INFO2;
2. If closed(C, e) ∈ CLOSED1, then

isOf(o, C, [e]) ∈ Dom(S1) iff isOf(o, C, [e]) ∈ Dom(S2).

The SGA starts from initial state S0 = 〈∅, TODO0, ∅, ∅〉 and yields a solution state
S = 〈DONE, ∅, CLOSED, INFO〉 such that S0 � S; since TODO = ∅, for ev-
ery I : isOf(o, C, [e]) ∈ TODO0, DONE contains a ground information term
(I : isOf(o, C, [e]))σ solving it. The algorithm computes a solution of S0 that is min-
imal with respect to � through a sequence of expansion steps. The latter are triples
〈S, I : isOf(o, C, [e]), S′〉 such that:
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p1. I : isOf(o, C, [e]) ∈ TODO (the selected goal);
p2. (I : isOf(o, C, [e]))σ ∈ DONE′ and I : isOf(o, C, [e]) �∈ TODO′ (it has been

solved);
p3. S ≺ S′ and, for every S∗ in solved form, S ≺ S∗ � S′ entails S∗ = S′ (no

solution is ignored).

The high-level code for a non deterministic SGA based on expansion steps is listed in
Fig.4, where TODO0 are the G-goals to be solved under theory 〈thAx, T 〉 and gener-
ation requirements G . The SGA is a general schema, whose core is the implementation
of the expansion steps, predicates error(S) and globalError(S). The latter are
based on the ideas presented in Section 3.1. They use the integrity constraints false
:- B to detect inconsistency and store in the variable UC the “unsolved constraints”.
To ensure the correctness of SG, an implementation has to guarantee properties p1, p2,
p3 of expansion steps as well as the following requirements:

(i) When new objects or new witnesses (for exi) are generated in an expansion
step, they are chosen according to the generation requirements, in such a way that
INFOS |= G for every generated state S.

(ii) When error(S) returns “true”, then INFOS′ is inconsistent w.r.t. T for every
S′ such that S � S′ (S included).

(iii) If globalError(S) returns “true”, then INFOS is inconsistent with respect to
T . If it returns “false”, then either UC is empty and INFOS ∪ T is consistent or
INFOS ∪ T ∪ UC is inconsistent.

SG (〈thAx,T 〉, G , ToDo0)
1 T hy = thAx; PDAx = T ∪G ; S = 〈 /0,ToDo0, /0, /0〉; UC = /0;
2 while ToDo �= /0 do
3 if error(S) fail;
4 else % Generation Step:
5 Choose I : isOf(o,C, [e]) ∈ ToDo and compute 〈S, I : isOf(o,C, [e]), S′〉;
6 S = S′;
7 if globalError(S) fail;
8 else return S, UC

Fig. 4. The SG Algorithm

The current implementation is essentially based on a refinement of the meta-
interpreter considered in Section 3.1. It could be improved, namely in detecting more
than trivial inconsistencies; indeed, no constraint simplification is supported.

To state the adequacy results, we introduce some additional notation (ITP) in order
to associate a class Cj and population P with their information terms:

ITP(P, Cj) = [ [ [oj1 , ej1 ], Ij1 ] , . . . , [ [ojk
, ejk

], Ijk
] ]

ITP(P ) = [ ITP(P, C1) , . . . , ITP(P, Cn) ]
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where, Ij1 : isOf(oj1 , Cj , [ej1 ]), . . . , Ijk
: isOf(ojk

, Cj , [ejk
]) are the G-goals of P

with class Cj (1 ≤ j ≤ n); if no G-goal with class Cj belongs to P , then ITP(P, Cj) is
the empty list.

Theorem 4 (Correctness). Let S∗ = 〈DONE∗, ∅, CLOSED∗, INFO∗〉 be a state com-
puted by SG with theory T = 〈thAx, T 〉 and generation requirements G , and let
I∗ = ITP(DONE∗) be the information term of the population DONE∗. Then, either UC
is empty and I∗ : thAx is G ∪ T -consistent, or I∗ : thAx is inconsistent with respect
to G ∪ T ∪ UC.

The proof follows from properties (i), (ii) and (iii).

Theorem 5 (Completeness). Let S0 = 〈∅, TODO0, ∅, ∅〉 be an initial state
of SG with theory T and generation requirements G . If there is a state
S = 〈DONE, ∅, CLOSED, INFO〉 such that S0 � S, then the SGA reaches a state S∗

in solved form such that S0 � S∗ � S.

The proof follows from properties p1, p2 and p3.

4 Related Work and Conclusion

We have presented some features of the object-oriented modeling language CooML, a
language in the spirit of UML, but based on a constructive semantics, in particular the
BHK explanation of logical correctives. We have introduced a proof-theoretic notion of
snapshot based on populations of objects and information terms, from which snapshot
generation algorithms can be designed. More technically, we have introduced genera-
tion goals and the notion of minimal solution of such goals in the setting of a CooML
specification, and we have outlined a non-deterministic generation algorithm, showing
how finite minimal solutions can be, in principle, generated. We use a constraint lan-
guage in order to specify the general properties of the problem domain, as well as the
generation requirements. In an implementation of the SGA we assume a consistency
checking algorithm, which either establishes the (in)consistency of the current snap-
shot, or residuates a set of unsolved constraints.

The relevance of SG for validation and testing in OO software development is widely
acknowledged. The USE tool [8] for validation of UML/OCL models has been recently
extended with a SG mechanism; differently from us, this is achieved via a procedural
language. Other animation tools [4] are based on JML specification. In [2] the specifi-
cation of features models are translated into SAT problems; tentative solutions are then
propagated with a Truth Maintenance System. If a inconsistency is discovered the TMS
explains the causes in view of possible model repair. Related work includes also [16],
where design space specs are seen as trees whose nodes are constrained by OCL state-
ments and BDD’s are used to find solutions.

Snapshot generation is only one of CooML’s aspects, once we put our software en-
gineering glasses on and see it more generally as a specification rather than modeling
language [12, 9]. In this paper we have not considered methods, although the underly-
ing logic supports a clean notion of (correct) query methods, namely those that do not
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update the system state, but extract pieces of information from it. The existence of a
method M answering P (i.e., computing I : P ) is guaranteed when P is a constructive
logical consequence of thAx. Moreover, M can be extracted from a constructive proof
of P . The implementation of query and update methods is a crucial part of future work.

We also plan to improve and extend the snapshot generation algorithm. There are
two directions that we can pursue; first, we can fully embrace CLP as a PD logic,
strengthening the connection that we have only scratched in Section 3.1. In the cur-
rent prototype there is little emphasis on the simplification of unsolved constraints.
This could be partially ameliorated by adopting CLP, in particular over finite domains.
More in general, it is desirable to relate Theorem 3 with the notion of satisfaction-
completeness in constraint systems [7]. Another direction comes from the relation
between CooML’s approach to incomplete information and answer set program-
ming [1, 17], in particular disjunctive LP [13]. A naive extension of the SGA to this
case would yield inefficient solutions, yet the literature offers several ways constraints
and ASP may interact [14, 5]. We may explore the possibility of combining snapshot
generation with SAT provers, to which we may pass ground unsolved constraints in
order to check global consistency. Finally we intend to explore the more general issue
of the relationships between information terms and stable models, in particular partial
stable models [21]; some initial results are presented in [20].
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