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Abstract
As a follow-up to the POPLMark Challenge, we propose a new
benchmark for machine-checked metatheory of programming
languages: establishing strong normalization of a simply-typed
lambda-calculus with a proof by Kripke-style logical relations. We
believe that this case-study overcomes some of the limitations of
the original challenge and highlights, among others, the need of na-
tive support for context reasoning and simultaneous substitutions.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs; F.4.1 [Mathematical Logic]: Lambda Calculus and Re-
lated Systems—Mechanical theorem proving, Proof theory

Keywords Machine checked meta-theory, benchmarks, POPLMark
Challenge, logical frameworks, strong normalization, logical rela-
tions

1. Introduction
The usefulness of sets of benchmarks has been recognized in many
areas of computer science, and in particular in the theorem prov-
ing community, for stimulating progress or at least taking stocks of
what the state of the art is, TPTP [Sutcliffe 2009] being one shin-
ing example. The situation is less satisfactory for proof assistants,
where each system comes with its own set of examples/libraries,
some of them gigantic; this is not surprisingly, since we are poten-
tially addressing the whole realm of mathematics.

In a more limited setting, some 12 years ago, a group of
renowned programming language theorists came together and is-
sued the so-called POPLMark Challenge [Aydemir et al. 2005]
(PC, in short), with the aim of fostering the collaboration between
the PL community and researchers in proofs assistants/logical
frameworks to bring about:

“[. . . ] a future where the papers in conferences such as
POPL and ICFP are routinely accompanied by mechanically
checkable proofs of the theorems they claim” (page 51 op.
cit.)

[Copyright notice will appear here once ’preprint’ option is removed.]

As we know, the challenge revolved around the meta-theory of F<:,
which, requiring induction over open terms, was an improvement
over the gold standard of mechanized meta-theory in the nineties:
type soundness. Yet, the spotlight of the PC was still on

“type preservation and soundness theorems, unique de-
composition properties of operational semantics, proofs of
equivalence between algorithmic and declarative versions
of type systems, etc.” (ibidem)

Further, the authors made paramount “the problem of represent-
ing and reasoning about inductively-defined structure with binders”
(our emphasis), while providing a balanced criticism of de Bruijn
indexes as an encoding technique. That focus was understandable,
since at that time the only alternative to concrete representations
was higher-order abstract syntax (HOAS), mostly in the rather pe-
culiar Twelf setting, the implementation of nominal logic being in
its infancy.

While the response of the theorem-proving community was im-
pressive with more than 15 (partial) solutions submitted (https:
//www.seas.upenn.edu/~plclub/poplmark/), one can argue
whether the envisioned future has became our present — accord-
ing to Sewell’s POPL 2014 Program Chair’s Report (https://
www.cl.cam.ac.uk/~pes20/popl2014-pc-chair-report.
pdf) “Around 10% of submissions were completely formalised,
slightly more partially formalised”. It is also debatable whether
the challenge had a direct impact on the development of proof
assistants and logical frameworks: specialized systems such as
Abella [Baelde et al. 2014] and Beluga [Pientka and Cave 2015]
were born out of independent research of the early 2000. To be gen-
erous, we could impute Abella’s generalization of its specification
logic to higher-order [Wang et al. 2013] to this Twelf POPLMark
solution [Pientka 2007], but development in mainstream systems
such as Coq, Agda, and (Nominal) Isabelle were largely driven by
other (internal) considerations.

In a much more modest setting, but in tune of with the goal
of the PC, Felty et al. [2017] recently presented some bench-
marks with the intention of going beyond the issue of represent-
ing binders, whose pro and cons they consider well-understood.
Rather, the emphasis was on the all important and often neglected
issue of reasoning within a context of assumptions, and the role that
properties such as weakening, ordering, subsumption play in for-
mal proofs. These are more or less supported in systems featuring
some form of hypothetical and parametric reasoning, but the same
issues occur in first-order representation as well; in this setting, typ-
ically, they are not recognized as crucial, rather they are considered
one of prices one has to pay when reasoning over open terms. This
set of benchmarks was accompanied by a preliminary design of a
common language and open repository [Felty et al. 2015b], which
is fair to say did not have a resounding impact so far.
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In the mean time, the PL world did not stand still, obviously.
One element that we have picked on is the multiplication of the
use of proofs by logical relations [Statman 1985] — not coinci-
dentally, those featured in Aydemir et al. [2005]’s section “Beyond
the challenge”. From the go-to technique to prove normalization
of certain calculi, proofs by logical relations are now used to at-
tack problems in the theory of complex languages models, with
applications to issues in equivalence of programs, compiler cor-
rectness, representation independence and even more intensional
properties such as non-interference, differential privacy and secure
multi-language inter-operability, to cite just a few [Ahmed 2015;
Bowman and Ahmed 2015; Neis et al. 2015].

Picking up PC’s final remark “We will issue a small number of
further challenges [. . . ]”, we propose, as we detail in Section 2.3 a
new challenge that we hope it will move the bar a bit forward. We
suggest Strong Normalization (SN) for the simply-typed lambda-
calculus proven via logical relations in the Kripke style formula-
tion, see [Coquand 1991] for an early use. We discuss the rationale
in the next Section.

2. The Challenge
2.1 Problem Selection
(Strong) normalization by Tait’s method is a well-understood and
reasonably circumscribed problem that has been a cornerstone of
mechanized PL theory, starting from [Altenkirch 1993]. There are
of course many alternative ways to prove SN for a lambda-calculus,
see for example the inductive approach of [Joachimski and Matthes
2003], partially formalized in [Abel 2008], or by reduction from
strong to weak normalization [Srensen 1997]. For that matter, a
SN proof via logical relations for the simply-typed lambda calculus
can be carried out (see for a classic example [Girard et al. 1990])
without appealing to a Kripke definition of reducibility. However,
the latter is handy in establishing SN for richer theories such as
dependently typed ones, as well as for establishing stronger results,
for example about equivalence checking [Crary 2005; Harper and
Pfenning 2005].

We claim that mechanizing such a proof is indeed challenging
since:

• It focus on reasoning on open terms and on relating different
contexts or worlds, taking seriously the Kripke analogy. The
quantification over all extensions of the given world may be
problematic for frameworks where contexts are only implicitly
represented, or, on the flip side, may require several boring
weakening lemmas in first-order representations.

• The definition of reducibility requires a sophisticated notion of
inductive definition, which must be compatible with the binding
structures, but also be able to take into account stratification, to
tame the negative occurrence of the defined notion.

• Simultaneous substitutions and their equational theory (compo-
sition, commutation etc.) are central in formulating and proving
the main lemma. For example, in the proof of the Fundamental
Theorem 2.6, we need to push substitutions through (binding)
constructs.

In this sense, this challenge goes well beyond the original PC,
where the emphasis was on binder representations, proofs by struc-
tural induction and operational semantics animation.

Previous formalizations of strong normalization usually fol-
lows Girard’s approach, see for example Donnelly and Xi [2007]
carried out in ATS/LF, or the one available in the Abella repos-
itory (abella-prover.org/~normalization/). Less frequent
are formalizations following the Kripke discipline: both Cave
and Pientka [2015] and Narboux and Urban [2008] encode Crary

[2009]’s account of decision procedures for term equivalence in
STLC, in Beluga and Nominal Isabelle respectively; the latter was
then extended in [Urban et al. 2011] to formalize the analogous
result for LF [Harper and Pfenning 2005]. See [Abel and Vezzosi
2014] for a SN Kripke-style proof for a more complex calculus
and [Rabe and Sojakova 2013] for another take to handling depen-
dent types — this paper also contains many more references to the
literature.

The choice of a Kripke-style proof of SN for STLC may sound
contentious on several grounds and hence we will try to motivate it
further:

• We acknowledge that SN is not the most exciting application
of logical relations, some of which we have mentioned in the
previous Section. Still, it is an important topic in type theory,
in particular w.r.t. logical frameworks’ meta-theory, see for
example [Altenkirch and Kaposi 2016], and in this sense dear
to our hearts. It is a well-known textbook example, which uses
techniques that should be familiar to the community of interest
in the simplest possible setting.

• Yes, the STLC is the prototypical toy language, while a POPL
paper will address richer PL theory aspects. For one, adding
more constructs, say in the PCF direction, perhaps with an
iterator, would make the proof of the fundamental theorem
longer, but not more interesting. Secondly, we think that a good
benchmark should be simple enough that it could be tried out
almost immediately if one is acquainted with proof-assistants.
Conversely, it should encourage a PL theorist to start playing
with proof assistants. Finally, we do suggest extensions of our
challenge in the next Section.

• The requirement of the “Kripke-style” may seem overly con-
strictive, especially since this is not strictly needed for STLC.
However, as we have argued before, this is meant as a spring-
board for more complex case studies, where this technique is
forced on us. Remember that we are interested in comparing
solutions. A more ambitious challenge may not solicit enough
solutions, if the problem is too exotic or simply too lengthy.

2.2 Evaluation Criteria
One of the limitations of the PC experiment was in the evaluation
of the solutions, although it is not easy to avoid the “trip to the
zoo” effect, well-known from trying to comparing programming
languages: there is no theory underlying the evaluation; criteria
tend to be rather qualitative, and finally, the comparison itself may
be lengthy [Felty et al. 2015a]. Within these limitations, of the
proposed solutions we will take into consideration the:

• Size of the necessary infrastructure for defining the base lan-
guage: binding, substitution, renamings, contexts, together with
substitution and other infrastructural lemmas.

• Size of the main development versus the main theorems in the
on-paper proof, in particular, number of technical lemmas not
having a direct counterpart in the on-paper proof.

More qualitatively, we will try to assess the:

• Ease of using the infrastructure for supporting binding, con-
texts, etc. How easy is it to apply the appropriate lemmas in the
main proof? For example, does applying the equational theory
of substitutions require low-level rewriting, or is it automatic?

• Ease of development of the overall proof; what support is
present for proof construction, when not proof and counterex-
ample search?
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2.3 The Challenge, Explained
Let us recall the definition of STLC, starting with the grammar of
terms, types, contexts and substitutions:

Terms M,N ::= x | λx:T.M | M N
Types T, S ::= B | T → S
Context Γ ::= · | Γ, x:T
Subs σ ::= ε | σ,N/x

The static and dynamic semantics are standard and are depicted
in Figure 1. Since we want to be very upfront about the fact that
evaluation goes under a lambda and thus involves open terms, we
make the context explicit even in the reduction rules, contrary to
what, say, Barendregt would do. Note that, because of rule E-ABS,
we do not need to assume that the base type is inhabited by a
constant. We denote with [σ]M the application of the simultaneous
substitution σ to M and with [σ1]σ2 their composition.

We now define the set of strongly-normalizing terms as pio-
neered by Altenkirch [1993] ad by now usual:

∀M ′. Γ `M −→ M ′ Γ `M ′ ∈ SN
Γ `M ∈ SN

expressing that the set of strongly normalizing terms is the well-
founded part of the reduction relation. A more explicit formulation
of strong normalization is allowed, see for example [Joachimski
and Matthes 2003], but then an equivalence proof should be pro-
vided.

The logical predicates have the following structure:

• Γ `M ∈ RT , and
• Γ′ ` σ ∈ RΓ.

We use a Kripke-style logical relations definition where we wit-
ness the context extension using a weakening substitution ρ. This
can be seen as a shift in de Bruijn terminology, while other encod-
ings may use different (or no particular) implementation techniques
for handling context extensions.

Definition 2.1 (Reducibility Candidates).
• Γ `M ∈ RB iff Γ `M : B and Γ `M ∈ SN:
• Γ ` M ∈ RT→S iff Γ ` M : T → S and for all N,∆ such

that Γ ≤ρ ∆, if ∆ ` N ∈ RT then ∆ ` ([ρ]M) N ∈ RS .

Lemma 2.1 (Semantic Function Application).
If Γ `M ∈ RT→S and Γ ` N ∈ RT then Γ `M N ∈ RS .

Proof. Immediate, by definition.

As usual, we lift reducibility to substitutions:

Definition 2.2 (Reducible Substitutions).
• Γ′ ` ε ∈ R·
• Γ′ ` σ,N/x ∈ RΓ,x:T

iff Γ′ ` σ ∈ RΓ and Γ′ ` N ∈ RT .

We now give an outline of the proof as a sequence of lemmas
— the reader will find all the details in the forthcoming full version
of this paper.

Lemma 2.2 (SN Closure under Weakening).
If Γ1 ≤ρ Γ2 and Γ1 `M ∈ SN then Γ2 ` [ρ]M ∈ SN.

Proof. By induction on the derivation of Γ `∈ SN1M .

Lemma 2.3 (Closure of Reducibility under Weakening).
If Γ1 ≤ρ Γ2 and Γ1 `M ∈ RT then Γ2 ` [ρ]M ∈ RT .

Proof. By cases on the definition of reducibility using the above
Lemma 2.2 and weakening for typing.

Lemma 2.4 (Weakening of Reducible Substitutions).
If Γ1 ≤ρ Γ2 and Γ1 ` σ ∈ RΦ then Γ2 ` [ρ]σ ∈ RΦ.

Proof. By induction on the derivation of Γ1 ` σ ∈ RΦ using
Closure of Reducibility under Weakening.

Lemma 2.5 (Closure under Beta Expansion).
If Γ ` N ∈ SN and Γ ` [N/x]M ∈ RS
then Γ ` (λx:T.M) N ∈ RS .

Proof. By induction on S after a suitable generalization.

Theorem 2.6 (Fundamental Theorem).
If Γ `M : T and Γ′ ` σ ∈ RΓ then Γ′ ` [σ]M ∈ RT .

Proof. By induction on Γ ` M : T . In the case for functions, we
use Closure under Beta Expansion (Lemma 2.5) and Weakening of
reducible substitution (Lemma 2.4).

3. Beyond the Challenge
There is an ongoing tension between weak and strong logical
frameworks [de Bruijn 1991], with which we can encode our
benchmarks. Weak frameworks are designed to accommodate ad-
vanced infra-structural features for binders (HOAS/nominal syn-
tax etc.) and for judgments (hypothetical and parametric), but
may struggle on other issues, such as facilities for computation
or higher-order quantification/impredicativity. There are at least
two coordinates in which we can directly extend our benchmark, to
further highlight this dilemma:

• Logical relations for dependent types [Abel and Vezzosi 2014;
Rabe and Sojakova 2013], up to the Calculus of Constructions.
Here we need to go beyond first-order quantification, which is
typically what is on offer in weak frameworks.

• Proof by logical relation via step-indexing [Appel and McAllester
2001]. Here we have two issues:

1. the logical relation may not be immediately accepted as an
inductive definition in its original formulation; for exam-
ple Coq would reject it as non-well-founded and ask for a
workaround.

2. It involves a limited amount of arithmetic reasoning:

“definitions and proofs have a tendency to become
cluttered with extra indices and even arithmetic,
which are really playing the role of construction
line.” (Benton and Hur [2010]).

This may be problematic for frameworks such as Abella
and Beluga, which do not (yet) have extensive libraries, nor
computational mechanisms (rewriting, reflection) for those
tasks.

4. Call for action
We ask the community to submit solutions and we plan to invite
everyone who submits a solution to contribute towards a joint
paper discussing trade-offs between them. The authors commit
themselves to produce solutions in Agda, Abella and Beluga. To
resurrect the slogan from the PC, a small step (excuse the pun) for
us, a big step for bringing mechanized meta-theory to the masses!
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