CLASE 2005 Preliminary Version

A Constructive Modeling Language for Object
Oriented Information Systems

Mario Ornagh®! Marco Benin® Mauro Ferrarf
Camillo Fiorentin® Alberto Momigliand®

a Dipartimento di Scienze dell'Informazione, Univeasitegli Studi di Milano,
via Comelico 39, 20135, Milano, Italy

b Dipartimento di Informatica e Comunicazione, Univedsitegli Studi dell'Insubria,
via Mazzini 5, 21100 Varese, Italy

Abstract

The central aspect in an Information System iseaningof data in theexternal world

and thenformationcarried by them. We propose a Modeling Language for Object Oriented
Information Systems based orcanstructive logic of the pieces of informatjamhere the

focus is on the meaning of data and on the correct way of storing, exchanging and elabo-
rating information. Although the research work presented in this paper is still preliminary,
we believe that its potential applications are of interest for the community.

1 Introduction

A software information syster8 allows users to store, retrieve and process infor-
mation about the external world, typically a data base. We can differentiate two
separate aspects in the data elaborate® bihe first concernslata typeswhile

the second is related to tiformation on the external “real world’tarried by the

data. Precisely, a data type is a set of data together with the associated manipula-
tions where the focus is ooperations In contrast, the information carried by the
data stored irgis strongly related to themeaning in the real worldThe need for
properly treating data according to their meaning is becoming increasingly impor-
tant, due to the wide quantity of information that is exchanged in the Intesyie [
Quoting [L2]: “One of the recent unifying visions is that of Semantic Web, which
proposed semantic annotation of data, so that programs can understand it, and
help in making decisions [...] The scope of semantics-based solutions has also
moved from data and information to services and processes”.

1 Contacting authorornaghi@dsi.unimi.it

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

ORNAGHI, BENINI, FERRARI, FIORENTINI, MOMIGLIANO

Specification and correct processing of semantically annotated data is the basic
motivation of our work: we propose @onstructive Modeling Languag€ML,
in short), where semantical annotations of data are formalized by a constructive
semantics of the pieces of informatio®ue to lack of space, the focus of the
paper is on the structure of the data stored in an OOIS (by OOIS, standing for OO
Information System, we refer to a system modelled by the CML). Our semantics of
the pieces of information is based on treuation form semantid®,10], which is
inspired by the BHK explanatiorip] of constructive connectives, but it preserves
the notion of truth of classical model theory. Classical truth allows us to model the
meaning in the external world jiL0].

We present CML using a Java-like syntax (JL-syntax). In Sejowe ex-
plain the semantics of the pieces of information and we introduce the CML. In
Section3, we show how an OOIS translates into a set of Java classes. Each Java
class has methods to correctly extract and transform pieces of information. The
semantics of the pieces of information defines a constructive giand correct
transformations are derived using a fragment of a calculus for this logic. For lack
of space, we will only briefly comment on the logic in the conclusions, where
future work is discussed and some references to related approaches are given.

2 The logical model of OOIS

We distinguish amondata typesinformation typesandobject typesData are con-
sidered as special, immutable objects, without life-time and state. Their properties
are general laws that hold independently of the external world. Thus data do not
carry any information by themselves. In this paper we assume (using a Java-like
syntax) int, boolean, String,. as predefined data types. We introduce the spe-
cial data type Obj obbject identities Each constand : Obj uniquely identifies

an object. We denote the signature of the predefined data types (including Obj)
by p. We do not further discuss data types, and we focugmtormation and
object types Information types allow us to organize data into suitable structured
“information values”. Objects are the core: they contain the information values,
the properties to interpret them in terms of the external world, and the methods to
correctly manipulate them. As usualassegroup objects with common proper-
ties and methods. We distinguigihplementation classedsom object types An
objecto has a unique implementation claSgthe one used to create it), but may
participate to many object types. The latter incl@ehe super-classes @fand

the implemented interfaces.

2.1 System Signatures and Meaning

The link between the data stored in a software system andrtteginingn the real

world is the result of the abstractions performed in émalysis phase Typically

(see e.g.,1]), the analysis has to produce a dictionary containing the abstract con-
cepts used in specifications, to choose the needed data types, and to devise general

2

ORNAGHI, BENINI, FERRARI, FIORENTINI, MOMIGLIANO

properties of the world that are of interest for the application at hand. We as-
sume that the dictionary includes a first ordgstem signaturgs that contains the
data sighatur&p and the problem signatud. The latter introduces the symbols
to express properties of the problem domain. In particular, it confaiedicate-
declarationsof the formp: [Obj, sy, ...,S] — boolean, whers;, ..., s, are sorts of
>p. Objects are abstractions of physical entities of the world, such as planets in the
solar system, or correspond to conceptual entities, such as orbits (the example is
from [1]). A ground atonmo.p(ty,...,tn) (in OO dot-notation) represents a property
of the entityo that may be true or false in a world—state In an OO approach,
objects are classified. #lass—predicatés a special predicatg, whereC is aclass
name The truth ofo.C(ty, ...,t) in a world—statev means thao is alive objectof
w, with class Candenvironmentt, ... tx. The environment is needed because an
object is rarely an isolated entity. In general, it collaborates with other objects and
may depend on them.

> s-formulas and&s-interpretations are defined as usual in classical logic, while
w = F denotes the truth of a closed formufain a Zs-interpretationw. s is
designed in such a way that each state of the “real world” is represented by a
interpretation through the abstractions stated in the analysis phase. We define the
class of the (abstract) world—statas the subclass of thl&s-interpretationsv such
that: (i) the set of live objects is finite, and (ii) data types are interpreted as prede-
fined.

Finally, the knowledge of the world is represented by a set of axioms and theo-
rems that we denote by WKBAorld Knowledge Bage The WKB includes a set
of axiomsAxp for reasoning on predefined data types.

Example 2.1 We consider the well knoweight queens problenThe physical ob-

jects of the real world are a chessboard and eight queens on it. A world—state is
determined by the positions of the queens. We look for the states where no queen
is attacked by another one. At this analysis level, we have the class—predicates
ChessBoarl®Dbj] — boolean and QueeriObj, Obj] — boolean. ch.ChessBoargd

means thatb is a chessboard arglQueericb) thatq is a queen orb. Theen-
vironmentis the chessboardb. To represent states, we introduce the predicate
inPosition: [Obj, Obj, int,int] — boolean. In terms of the real world, the predicate
g.inPositionch,r,c) means that queeq is on rowr and columnc of the chess-
boardch. We may introduce in the WKB new predicates, useful for specification
purposes, bexplicit definition and proveclassical lemmasuch as being prov-

ability in classical logic):

Dup: Q.UpAti(i, j) < 3 Objcbintr,c: g.inPosition(cb,r,c) AO<r AT <
A(j=cvabgi—r)=abyj—c))
cl(1) : this.inPositioncb,i, j) F¢ —thisupAtti, j);

3

ORNAGHI, BENINI, FERRARI, FIORENTINI, MOMIGLIANO

2.2 Properties, Information Values and Pieces of Information

Objects of an OOIS contaimformation valueshat are structured to represent
pieces of informatiombout the external world according to the objpriperties
EachZgs-formula is anatomic property(or atom). Atoms are interpreted as usual
in classical logic, i.e., the only information associated with them is their truth. To
introducestructuredproperties we use the following separated JL-syntax (where
B, F denote>gs-formulas,T x a sequencg of variables with types):

Atoms AT = F;

Basic Properties BP := AT | or{AT ... AT}

Bounded Universal ProBUP := ror{1 X|B: SP}

Structured Properties ~ SP := BP|BUP| anp{SP... SP} | exi{T1 x: SP}

The binding formula Bis a special atom, true for finitely many ground instances
of x. Class predicatesC(...) are binding formulas fox. We use the abbreviation
EX{TX: Py ... Py} for exi{t x: ano{Py ... Ph}}.

An SP formulaP represents both an information type and a formula (in the
latter,or{. ..} is a disjunctionann{...} a conjunctiongxi{t x: ...} isFTXx: (...),
ror{T X|B: ...} the bounded quantificatioitx: (B — (...)). An information
type is a set of information values, where an information value is a constant of
the predefined data types or (recursively) a finite list of information values such as
(("Johri,1),("Pluta’,2)). A propertyP gives meaning to the information values
that belong to théenformation typer(P) of P, defined as follows:

ir(or{A1 ... An}) =

) .n;
ir(ann{Py ... Ph}) =

)

)

1

{(i1,...,in) | ik € (FK),1<k<n}
= {(c,i) | c:1tandi cr(P)};

{((gl7il>7"'v(9m7im)> ’

m> 0and for 1I< k<m, ¢ : tandix € ir(P)}

r(exi{T X: P}
ir(ror{T X|B: P}

For an atomAq, 1r(A1) = 1r(or{A1 A1}). An information value for a BUP is an
association list. = ((¢q,i1),...,(Cyn,im)). We denote byomL) ={c,,...,cy} the
domain ofL. ir(P) does not depend on the free variable®pf.e.,ir(P) = 1r(Po)
for every substitutioro.

A piece of informatioris a pairi : P, whereP is a property and € 1r(P). For
every substitutiomw groundingP, themeaning of i Po in a world—statev is given

4

ORNAGHI, BENINI, FERRARI, FIORENTINI, MOMIGLIANO

by the relatiornw ||= i : Po (to readi : Po is true in W) defined as follows:
WEi:or{Ay ... Ag}oiff wi= Ao
W= (i1,...,in) i anD{Py ... Py}oiff w|Eix:Ro,forallk=1,...,n
Wl (i) s mxi{Tx: P(X)}o iff wEi:P(c)o
W |= L ror{T X|A(X) : P(x) }o iff (c € dom(L) iff w|= A(c)o) and
((c,i) € Lentailsw |[=1: P(c)o)

In a piece of information : P, the information value is separated from its
meaning. We can associate it with a semantically equivalent propéwtyth the
same information type d®, without changing the involved information values or
methods.

Example 2.2 The piece of information
(("Johri; 1), ("Pluto’,2)) : ror{Objx|OcdXx,roonb) : or{Persorix); Dog(x); } }

means that in the current world-statéohri’ and "Pluto’ are the occupants of
roonb, "Johri is a person, andPlutd’ a dog. If the WKB containgoonb =
bigroom and Persori{x)«— Man(x) VWomairtx), we can replace the above prop-
erty by ror{Obj x| Ocdx, bigroom) : or{Man(x) Vv Womartx); Dog(x); } }. Since

the information type is the samer(Persor{x)) = rr(Man(x) vV Womairtx)) =

1..1), we can keep the same pieces of information and the same methods. Now
the information is that Johr and "Plutg’” are the occupants obbigroom and

that "Johri' is @ man or a woman. In contrast, we cannot replBeesor{x) by
or{Man(x); Womarix); }, because the information type of the latter i1

A piece of informationi : Ax for a setAx of closed axioms is a set of pieces
of informationia : A, one for each axionA of Ax. We say thatw | i : Ax iff
W [[=ia A, for everyA € Ax. In the next subsection we model the states of an
OOISShy the pieces of information for the axioms definedy

2.3 0OOIS Specifications

The axioms of an OOIS are BUPs introduced bglass definition®f the form:
ClassC extendsCy,...,Cy {

env{T e: Fc(tg);x1.Ca(ty); ... %-Ck(ty); } ir ptyNamég S (this,e); } Mc
¥
where theenvironment variablesf C aree = {x,..., X} Uvargtg,ty,...,t;), and
the class-predicatdor C is this.C(e). In their declaration S (this,e) is a SP and
ptyNameis a name for it. After ther-declaration there is a lig¥ic of method
specifications. Methods are briefly discussed in the conclusion. We associate with
the the above class definition the following formulas.

e Theenvironment constraint

ORNAGHI, BENINI, FERRARI, FIORENTINI, MOMIGLIANO

Env(C):V1e:thisC(e) — Fc(e) Ax1.Ca(ty) A~ AXk.Ci(ty)
relating e to (a possible)(e) and stating a link to the environments of the
(possible) super-classes:

e Theclass property
Pc(this, e) = ann{ & (this, €) Pcl(X]_,L'l) ... P (X, t) }

If C has no super-classes, thers- 0 andP:(this,e) = S (this, e), otherwise the
properties of the super-classes are inherited accordiBgu¢C).

 If Cis animplementation clasee Sectio2), we introduce thelass axiom
Ax(C) : ror{T e|C(this,e) : P-(this,e)}
wherePR: is the class property faZ. No class axiom is associated with abstract
classes and interfaces, because no object can be created by them.

An OOIS is (specified by) a s&of class definitions. We associate with it the set of
first order axiomsAx(S) containing the environment constraints of all the classes
and the class axioms of all thplementation classed S.

Example 2.3 Below, we show the classes for the EightQueens system{T !x:
P(x)} abbreviatesxi{t x: axp{P(X);VTy:P(y) = y=X;}}.
ClassChessBoard

1T chbPty{anp{ exi{Obj !firstq: firstqg.FirstQueef(this); }
IntRows{ror{row| 1..6 : Exi{Obj !q: g.InQueertthis,row); } } }
ex1{Obj !lastq: lastgLastQueefthis); } } }

}

abstract ClassQueen{
eNv{ Objchbint row: chhChessBoar@;row € 0..7; }

it gPty{exi{int!col : this.inPositionchh row,col) A col € 0..7; }

}

abstract ClassUpQueerextendsQueeny{

eExv{ Objchbyint row: this.Queerichb,row); }

1T upgPty{exi{Obj!dwn: dwnQueerichb row+1); } }
}

abstract ClassDownQueerextendsQueery

exv{ Objchbint row: this.Queerichb,row); }

T dwgPty{exi{Obj lup: up.Queerichb row—1); } }

}

ClassFirstQueerextendsUpQueer{ gnv{Objchb: this.UpQueerichb 0);} }

ClassLastQueerextendsDownQueen{ rxv{Objchb: this.DownQueetchhb 7);} }
ClassInQueenextendsDownQueenUpQueery

ENv{Obj chlyint row : this. DownQueefichb, row); this.UpQueeiichb row); }

}

ORNAGHI, BENINI, FERRARI, FIORENTINI, MOMIGLIANO

According tochbPty, each row contains one queen. A queen always stands
on its row and can change its column. The first queen has only a lower queen,
the last one has only an upper queen, and the intermediate queens have both. This
in view of a search where each queen collaborates with its nearest queens to get
the next chessboard configuration so that no queen is attacked. The axiomatisation
corresponding to the EightQueens system is:

Axioms for the Environment Constraints
V(this.FirstQueefchb) — this.UpQueerichb 0));
V(this.LastQueefchb) — this.DownQueelchb,7));
V(this.InQueerichb,row) — this.UpQueerichb, row)
A this.DownQueefchb row));
V(this.UpQueeitichb row) — this.Queerichb row));
V(this.DownQueeiichhb row) — this.Queerichb row));
V(this.Queerichb row) — chbhChessBoard Arow =0,...,7))
Class Axioms’:
ror{ |this.ChessBoarg : chbPty(this)}
ror{Obj chb| this.FirstQueefchb) : axo{upgPty(chh 0) gPty(this,chb 0)}}
ror{ODbj chb| this.LastQueefchb) : axp{dwqgPty(chb,7) gPty(this,chb 7)}}
ror{Obj chb,introw|this.InQueerichb row) :
ann{dwqgPty(chb row) upgPty(chb row) gPty(this,chb,row)}}

2.3.1 System States

Let 2 : Ax(C) be the piece of information for a class axiohx(C) = V1ix:
this.C(x) — Pc(this,x). ThenZ is a (possibly empty) list of pieces of informa-

tion of the form((o,t),i) (whereo instantiateghis). We call £ a population of

class C We treat a population as a set. The populat®wf an OO system is

the union of the populations of its classes. We say that an objeetongs to the
population? iff there is an information valu¢(o,t),i) € . A population? is

finite (an OO system has a finite set of objects) and each objett? occurs in

a unique information—valugo,t),i) € 2 (an object belongs to an OO system in

a unique copy). The environment constraint®\&{S) do not contain information

on the current state because they are closed atoms (the only information carried by
w|lE=1:Kisw = K, and it must hold in every state). Thus, we leave them under-
stood, identify system states with populations, and define truth of system states as
follows:

2 The self-referencehis is implicitly universally quantified and we ustyNamey...) for the cor-
responding formula, for conciseness.

7

ORNAGHI, BENINI, FERRARI, FIORENTINI, MOMIGLIANO

Definition 2.4 Let P be a population for an OO systeBandw be a world—state.
Thenw | P : Siff:

o W|E= & : AX(C) for every clas< of S whereZ: is the population of class,
and

» w = K for every environment constraiit of Ax(S).
Example 2.5 We generate a population for the EightQueen system, and a world—
statew for it. We start with a single ChessBoard-objebtx

PchessBoard (((chb), (f,i,1))) € ir(this.ChessBoard — chbPty(this))
We choose:

f=(do,1), i =(((2),(0,1)),...,((6),(G,1)), | = (a7,1)

Thus,w has to satisfy?:

w = ChessBoar() iff 0= chh,

w |= 1 : FirstQueefrjo, chb) AV Objx : FirstQueelx, chb) — X = qg,

w | 1: InQueelfqr,chbr) AV Objx: InQueerix,chbr) — x=gq, forr € 1..6,

w |= 1: LastQuee(qy, chb) AV Obj x : LastQueefx,chb) — x = qg.

A possible population for FirstQueen, InQueen, LastQueen contagng., gy
is:

PrirstQueen— ((Go,chb), ((d1,1),(0,1))) € rr(Ax(FirstQueeh)
AnQueen = ((aq1,chb1),((do.1),(02,1),(0,1)),...,

(g, chb 6), ((gs,1), (a7, 1), (0,1))) € rr(Ax(InQueen)),
P astQueen= ((a7,¢hb), ((0e,1),(0,1))) € rr(Ax(LastQueep).

requiring that:
w | (0,1) : qPty(qr, chb) foro<r <7,
W/ (gr41,1) : dwgPty(qr,chb) for0<r <86,
W/ (gr-1,1) : upgPty(qr,chb) forl<r<7.
Our population is

? = PchessBoart! FrirstQueer FinQueern FLastQueen

It is aconsistent populatigrsince a world—stater such thaiv ||= 2 : EightQueens
exists. It represents a chessboahth where each row contains the queeg in
column 0. Other consistent populations with the same objects can be obtained, by
changing the columns of the queens.

3 AND{A;B} is equivalent toA A B if A B are atoms, because|= (1,1) : AND{A;B} iff w|=1
ANB.

8

ORNAGHI, BENINI, FERRARI, FIORENTINI, MOMIGLIANO

3 Deriving Java Programs

It is possible to extract a Java program from an OOIS, as follows: every Class

of Sis translated into a Java clags, which represents the environment and the
pieces of information o€ and which has the methodsy () andinfo () to wrap
information values and properties into other suitable Java classes. Java does not
allow multiple inheritance. However, if we can eliminate it by dropping some
intermediate abstract classes, the translation equally works (in Ex&ripleve

drop UpQueen and DownQueen). Properties are transformed in the standard form
exi{X T :Cy;...;Cqh}, where eaclC; is either a BP or a BUP. The variablgg
become attributes ak.. If Cj is an atom, a comment is generated, if it is BP, an
int attribute is generated; if it is a BUP, an auxiliary class is generated, having the
name shown in the OOIS-model (in Exampld, IntRows).

Example 3.1 The CML class Chessboard becomes the following Java class.
import info.*;
public class ChessBoard {

//ChbPty: exi:
FirstQueen first;
LastQueen last;
//and:
//true{first.FirstQueen (this);unique (first);}
IntRows intRows = new IntRows (this);
//true{last.LastQueen (this);unique (last);}

//endPty

/‘k*********************‘k* WRAPPERS *‘k‘k******************‘k***/

public ExilInfo info(){

ExiInfo info = new ExiInfo();

...//automatically generated }

public ExiPty info(){
ExiPty pty = new AndPty();

...//automatically generated }

The auxiliary class IntRows is omitted for the sake of spaeeiInfo and
ExiPty are classes of the packagefo, which implements pieces of information.
The Java classhessBoard, together with its wrapper methods, can be automati-
cally generated starting from the corresponding CML class.

Classes generated in this way are regular Java classes that can be easily un-
derstood by a Java programmer; methods can be implemented in the usual way as
well. The clasgxipPty is a subclass of a clagsy. A pty-objectp represents a

9

ORNAGHI, BENINI, FERRARI, FIORENTINI, MOMIGLIANO

property and it has a methadplies such thafp.implies (q) returns an objean

with amap method fromr(p) into rr(q). The map is correct, i.ew |= i : p entails

w ||= mmap(i) : g. The algorithm for extractingis based on a fragment of a cal-
culusC* for the constructive logic of the pieces of information. For lack of space,
we cannot discuss this issue here, but we briefly comment on it in the conclusions.
The map method supports correct exchange of semantically annotated data. For
example, the current state of an object can be wrapped into a piece of information
i - M and sent to different (possibly remote) interfaggs. . ., R,. EachR; can use

I - M in a different way, mapping it according to its local knowledge.

4 Conclusion

Various logically based modeling languages of OO systems have been proposed,
using different formal contexts (e.g2,14,1,11]). Our setup is the constructive se-
mantics ofvaluation forms This semantics is related to Medvedev’s logic of finite
problems 8] and it has been studied ii1(,9]. Our aim is to design a logically
based OO modeling language for information systems, intended as software sys-
tems to store and manipulate information with external meaning So far, we

have concentrated our analysis on the way of organizing data and meaning in terms
of populations of arDbject Oriented Information Systef@OIS). Actually, it is
possible to translate an UMI4] class diagranD with OCL constraints into an
OO0IS &, and to represent the populationsSpf as object diagrams instantiating

D. Thus, we have an adequate expressive power. Although the work presented here
is still a preliminary study, we believe that the approach is promising. In fact below
we list some possible developments, which can turn it into useful applications. We
give also some references to related approaches.

Snapshots and Consistency

In Example2.5 we have generated a population for the EightQueens system.
Populations correspond to UML object diagrams, also called system snapghots |
Showing snapshots is useful to understand an OO model and there are systems en-
abling snapshot generation (e.cf],[based on OCL14]). One of the problems
with OO specification is consistency. For example, it is easy to build UML class
diagrams with inconsistent multiplicities. In our approach, an OBikSconsistent
iff it has a consistent populatio®, and? is consistent iff there is at least an ab-
stract worldw such thatwv |= 2 : S In general, the consistency of a population is
not decidable. We are studying a partial solution, requiring a restricted syntax for
atoms.

Correct Information Exchange

Information values and their meaning are distinct aspects. Pieces of information
i : P combine them according to multiple meanings. A similar idea has been de-
veloped in XML technology, where XML documents can be interpreted according

10

ORNAGHI, BENINI, FERRARI, FIORENTINI, MOMIGLIANO

to different schemash]. It is possible to use this technology to wrap informa-
tion values in XML documents and to define a suitable XML formalism (similar
to XML schemas) to represent properties. This would support correct exchange of
semantically annotated data, following the trend of Semantic W& [

Logical Issues

Our properties can be translated into a fragment of the predicative language
of logic E* introduced in 1L0]. In E*, atoms are represented ByformulasT (F)
having information type 11, while the logical connectives introduce structured
information types. If we represent each atémby T(F) and we replaceOr,
And, Exi, For by the corresponding logical connectives, each property becomes
an E*-formula and we obtain a fragment of the predicative language oE" is
a maximal intermediate constructive propositional logic with a valid and complete
calculus [LQ]. The full predicative extension &* has not been studied yet. For our
fragment, there is a valid and complete calculiis(if we abandon requirements
(1), (i) for the world—states).

Methods and Proofs as Programs
A method specification in the class Queen is, e.qg.:

exi{ Obj q: or{g.upAtt(row,n); =3 Objq: g.upAtt(row,n); } }
g.upAtt(m,n) wherem=0,...,7

For everyn € 0..7, upAtt(row, n) returns(q, 1) (there is an upper queenthat at-
tacks the positiorfrow, n), whererow is an environment attribute) gany;2) (no

such queen existgny stands for any object). A Java implementation returns an
ExiInfo-object. Sincé&™ is constructive, it is possible to use the calculigo ex-

tract an implementation afpAtt C* has been used to define the methadiudes

(see Sectior®). It is possible to us€* to derive the implementation of methods,
but we have not developed this idea yet, although this is closely related to the well
known idea of proofs as progran3 .

Implementation Issues

Our reference language is Java, but other OO languages may be employed as
well. So far, we only have a partial prototypical implementation. The translation
from CML classes into corresponding Java classes has been defined but not im-
plemented yet (we do it manually), and our JL-syntax is still unstable. We have
implemented a hierarchy of classes to wrap information values and properties (see
Example3.1). The methodincludes provides a basic information transforma-
tion. To adapt it to different knowledge contexts, differ&iKB-packages can
be imported, containing (a representation of) pre-prosladsical lemmasf the
form I ¢ F, whereF is an atom (atoms haveG -proof iff they have a classical
proof). Classical lemmas can be formally proven or informally stated. An example
is Persortx) ¢ Man(x) V Womatix) (see Exampl@.?2).

11

ORNAGHI, BENINI, FERRARI, FIORENTINI, MOMIGLIANO
References

[1] M. Abadi and L. CardelliA Theory of ObjectsSpringer-Verlag, New York, 1996.

[2] A.L. Baker, C. Ruby, and G.T. Leavens. Preliminary design of JML: A behavioural
interface specification language for Java. Technical report 98-06, Department of
Computer Science, lowa State University, 1998.

[3] J.L. Bates and R.L. Constable. Proofs as program8CM Transactions on
Programming Languages and Systeifd):113—-136, January 1985.

[4] G. Booch, J. Rumbaugh, and I. Jacobsonhe Unified Modeling Language User
Guide Addison-Wesley, Reading, Massachusetts, USA, first edition, 1999.

[5] D. C. Fallside (Eds). “XML Schema Part 0: Primer”. W3C Recommendation, May
2001. http://www.w3.0rg/TR/xmlschema-0.

[6] M. Gogolla, M.Richters, and J. Bohling. Tool support for validating UML and OCL
models through automatic snapshot generatiolSAICSIT '03 pages 248-257, 2003.

[7] C. Larman. Applying UML and Patterns Prentice Hall, Upper Saddle River, NJ,
1998.

[8] Ju.T. Medvedev. Finite problemSoviet Mathematics Doklad@:227-230, 1962.

[9] P. Miglioli, U. Moscato, M. Ornaghi, S. Quazza, and G. Usberti. Some results on
intermediate constructive logicdNotre Dame Journal of Formal Logi80(4):543—
562, 1989.

[10] P. Miglioli, U. Moscato, M. Ornaghi, and G. Usberti. A constructivism based on
classical truthNotre Dame Journal of Formal Logi80(1):67—-90, 1989.

[11] D. Remy. Using, understanding, and unravelling the OCaml language. From practice
to theory and vice versaApplied Semantics. Advanced Lecturescture Notes in
Computer Science, 2395:413-537, 2002.

[12] A. Sheth. DB-IS research for Semantic Web and enterprises. Brief history
and agenda. LSDIS Lab, Computer Science, University of Georgia, 2002.
http://Isdis.cs.uga.edu/SemNSF/Sheth-Position.doc.

[13] A.S. Troelstra. Aspects of constructive mathematics. In J. Barwise, edaodbook
of Mathematical LogicNorth-Holland, 1977.

[14] J. Warmer and A. KleppeThe Object Constraint Language: Precise Modelling with
UML. Object Technology Series. Addison-Wesley, Reading/MA, 1999.

12

	Introduction
	The logical model of OOIS
	System Signatures and Meaning
	Properties, Information Values and Pieces of Information
	OOIS Specifications

	Deriving Java Programs
	Conclusion
	References

