
CLASE 2005 Preliminary Version

A Constructive Modeling Language for Object
Oriented Information Systems

Mario Ornaghia,1 Marco Beninib Mauro Ferrarib

Camillo Fiorentinia Alberto Momiglianoa

a Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano,
via Comelico 39, 20135, Milano, Italy

b Dipartimento di Informatica e Comunicazione, Università degli Studi dell’Insubria,
via Mazzini 5, 21100 Varese, Italy

Abstract

The central aspect in an Information System is themeaningof data in theexternal world
and theinformationcarried by them. We propose a Modeling Language for Object Oriented
Information Systems based on aconstructive logic of the pieces of information, where the
focus is on the meaning of data and on the correct way of storing, exchanging and elabo-
rating information. Although the research work presented in this paper is still preliminary,
we believe that its potential applications are of interest for the community.

1 Introduction

A software information systemSallows users to store, retrieve and process infor-
mation about the external world, typically a data base. We can differentiate two
separate aspects in the data elaborated byS: the first concernsdata types, while
the second is related to theinformation on the external “real world”carried by the
data. Precisely, a data type is a set of data together with the associated manipula-
tions where the focus is onoperations. In contrast, the information carried by the
data stored inS is strongly related to theirmeaning in the real world. The need for
properly treating data according to their meaning is becoming increasingly impor-
tant, due to the wide quantity of information that is exchanged in the Internet [5,12].
Quoting [12]: “One of the recent unifying visions is that of Semantic Web, which
proposed semantic annotation of data, so that programs can understand it, and
help in making decisions [. . .] The scope of semantics-based solutions has also
moved from data and information to services and processes”.

1 Contacting author:ornaghi@dsi.unimi.it

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Ornaghi, Benini, Ferrari, Fiorentini, Momigliano

Specification and correct processing of semantically annotated data is the basic
motivation of our work: we propose aConstructive Modeling Language(CML,
in short), where semantical annotations of data are formalized by a constructive
semantics of the pieces of information. Due to lack of space, the focus of the
paper is on the structure of the data stored in an OOIS (by OOIS, standing for OO
Information System, we refer to a system modelled by the CML). Our semantics of
the pieces of information is based on thevaluation form semantics[9,10], which is
inspired by the BHK explanation [13] of constructive connectives, but it preserves
the notion of truth of classical model theory. Classical truth allows us to model the
meaning in the external world w[10].

We present CML using a Java-like syntax (JL-syntax). In Section2, we ex-
plain the semantics of the pieces of information and we introduce the CML. In
Section3, we show how an OOIS translates into a set of Java classes. Each Java
class has methods to correctly extract and transform pieces of information. The
semantics of the pieces of information defines a constructive logicE∗, and correct
transformations are derived using a fragment of a calculus for this logic. For lack
of space, we will only briefly comment on the logicE∗ in the conclusions, where
future work is discussed and some references to related approaches are given.

2 The logical model of OOIS

We distinguish amongdata types, information typesandobject types. Data are con-
sidered as special, immutable objects, without life-time and state. Their properties
are general laws that hold independently of the external world. Thus data do not
carry any information by themselves. In this paper we assume (using a Java-like
syntax) int, boolean, String,. . . as predefined data types. We introduce the spe-
cial data type Obj ofobject identities. Each constanto : Obj uniquely identifies
an object. We denote the signature of the predefined data types (including Obj)
by ΣD. We do not further discuss data types, and we focus oninformation and
object types. Information types allow us to organize data into suitable structured
“information values”. Objects are the core: they contain the information values,
the properties to interpret them in terms of the external world, and the methods to
correctly manipulate them. As usual,classesgroup objects with common proper-
ties and methods. We distinguishimplementation classesfrom object types. An
objecto has a unique implementation classC (the one used to create it), but may
participate to many object types. The latter includeC, the super-classes ofC and
the implemented interfaces.

2.1 System Signatures and Meaning

The link between the data stored in a software system and theirmeaningin the real
world is the result of the abstractions performed in theanalysis phase. Typically
(see e.g., [7]), the analysis has to produce a dictionary containing the abstract con-
cepts used in specifications, to choose the needed data types, and to devise general

2

Ornaghi, Benini, Ferrari, Fiorentini, Momigliano

properties of the world that are of interest for the application at hand. We as-
sume that the dictionary includes a first ordersystem signatureΣS that contains the
data signatureΣD and the problem signatureΣP. The latter introduces the symbols
to express properties of the problem domain. In particular, it containspredicate-
declarationsof the formp : [Obj,s1, . . . ,sn]→ boolean, wheres1, . . . ,sn are sorts of
ΣD. Objects are abstractions of physical entities of the world, such as planets in the
solar system, or correspond to conceptual entities, such as orbits (the example is
from [1]). A ground atomo.p(t1, . . . , tn) (in OO dot-notation) represents a property
of the entityo that may be true or false in a world–statew. In an OO approach,
objects are classified. Aclass–predicateis a special predicateC, whereC is aclass
name. The truth ofo.C(t1, . . . , tk) in a world–statew means thato is a live objectof
w, with class Candenvironment t1, . . . , tk. The environment is needed because an
object is rarely an isolated entity. In general, it collaborates with other objects and
may depend on them.

ΣS-formulas andΣS-interpretations are defined as usual in classical logic, while
w |= F denotes the truth of a closed formulaF in a ΣS-interpretationw. ΣS is
designed in such a way that each state of the “real world” is represented by aΣS-
interpretation through the abstractions stated in the analysis phase. We define the
class of the (abstract) world–statesas the subclass of theΣS-interpretationsw such
that: (i) the set of live objects is finite, and (ii) data types are interpreted as prede-
fined.

Finally, the knowledge of the world is represented by a set of axioms and theo-
rems that we denote by WKB (World Knowledge Base). The WKB includes a set
of axiomsAxD for reasoning on predefined data types.

Example 2.1 We consider the well knowneight queens problem. The physical ob-
jects of the real world are a chessboard and eight queens on it. A world–state is
determined by the positions of the queens. We look for the states where no queen
is attacked by another one. At this analysis level, we have the class–predicates
ChessBoard[Obj]→ boolean and Queen :[Obj,Obj]→ boolean. cb.ChessBoard()
means thatcb is a chessboard andq.Queen(cb) that q is a queen oncb. Theen-
vironmentis the chessboardcb. To represent states, we introduce the predicate
inPosition: [Obj,Obj, int, int] → boolean. In terms of the real world, the predicate
q.inPosition(cb, r,c) means that queenq is on row r and columnc of the chess-
boardcb. We may introduce in the WKB new predicates, useful for specification
purposes, byexplicit definition, and proveclassical lemmassuch as (̀cl being prov-
ability in classical logic):

Dup : q.upAtt(i, j)↔∃Obj cb, intr,c : q.inPosition(cb, r,c)∧0≤ r ∧ r < i

∧ (j = c∨abs(i− r) = abs(j−c))

cl(1) : this.inPosition(cb, i, j) `cl ¬this.upAtt(i, j);

3

Ornaghi, Benini, Ferrari, Fiorentini, Momigliano

2.2 Properties, Information Values and Pieces of Information

Objects of an OOIS containinformation valuesthat are structured to represent
pieces of informationabout the external world according to the objectproperties.
EachΣS-formula is anatomic property(or atom). Atoms are interpreted as usual
in classical logic, i.e., the only information associated with them is their truth. To
introducestructuredproperties we use the following separated JL-syntax (where
B,F denoteΣS-formulas,τ x a sequencex of variables with typesτ):

Atoms AT ::= F ;

Basic Properties BP := AT | or{AT . . . AT}

Bounded Universal Prop.BUP := for{τ x|B : SP}

Structured Properties SP := BP | BUP | and{SP. . . SP} | exi{τ x : SP}

The binding formula Bis a special atom, true for finitely many ground instances
of x. Class predicatesx.C(. . .) are binding formulas forx. We use the abbreviation
exi{τ x : P1 . . . Pn} for exi{τ x : and{P1 . . . Pn}}.

An SP formulaP represents both an information type and a formula (in the
latter,or{. . .} is a disjunction,and{. . .} a conjunction,exi{τ x : . . .} is ∃ τ x : (. . .),
for{τ x|B : . . .} the bounded quantification∀ τ x : (B → (. . .)). An information
type is a set of information values, where an information value is a constant of
the predefined data types or (recursively) a finite list of information values such as
((”John” ,1),(”Pluto” ,2)). A propertyP gives meaning to the information values
that belong to theinformation typeit(P) of P, defined as follows:

it(or{A1 . . . An}) = 1..n;

it(and{P1 . . . Pn}) = {(i1, . . . , in) | ik ∈ it(Pk),1≤ k≤ n}

it(exi{τ x : P}) = {(c, i) | c : τ andi ∈ it(P)};

it(for{τ x|B : P}) = {((c1, i1), . . . ,(cm, im)) |

m≥ 0 and for 1≤ k≤m, ck : τ andik ∈ it(P)}

For an atomA1, it(A1) = it(or{A1 A1}). An information value for a BUP is an
association listL = ((c1, i1), . . . ,(cm, im)). We denote bydom(L) = {c1, . . . ,cm} the
domain ofL. it(P) does not depend on the free variables ofP, i.e., it(P) = it(Pσ)
for every substitutionσ.

A piece of informationis a pairi : P, whereP is a property andi ∈ it(P). For
every substitutionσ groundingP, themeaning of i: Pσ in a world–statew is given

4

Ornaghi, Benini, Ferrari, Fiorentini, Momigliano

by the relationw ||= i : Pσ (to readi : Pσ is true in w) defined as follows:

w ||= i : or{A1 . . . An}σ iff w |= Aiσ

w ||= (i1, . . . , in) : and{P1 . . . Pn}σ iff w ||= ik : Pkσ, for all k = 1, . . . ,n

w ||= (c, i) : exi{τ x : P(x)}σ iff w ||= i : P(c)σ

w ||= L : for{τ x|A(x) : P(x)}σ iff (c∈ dom(L) iff w |= A(c)σ) and

((c, i) ∈ L entailsw ||= i : P(c)σ)

In a piece of informationi : P, the information valuei is separated from its
meaning. We can associate it with a semantically equivalent propertyP′ with the
same information type ofP, without changing the involved information values or
methods.

Example 2.2 The piece of information

((”John” ,1),(”Pluto” ,2)) : for{Obj x|Occ(x, room5) : or{Person(x);Dog(x);}}

means that in the current world-state ”John” and ”Pluto” are the occupants of
room5, ”John” is a person, and ”Pluto” a dog. If the WKB containsroom5 =
bigroom and Person(x)↔ Man(x)∨Woman(x), we can replace the above prop-
erty by for{Obj x|Occ(x,bigroom) : or{Man(x)∨Woman(x);Dog(x);}}. Since
the information type is the same (it(Person(x)) = it(Man(x) ∨Woman(x)) =
1..1), we can keep the same pieces of information and the same methods. Now
the information is that ”John” and ”Pluto” are the occupants ofbigroom and
that ”John” is a man or a woman. In contrast, we cannot replacePerson(x) by
or{Man(x);Woman(x);}, because the information type of the latter is 1..2.

A piece of informationi : Ax for a setAx of closed axioms is a set of pieces
of information iA : A, one for each axiomA of Ax. We say thatw ||= i : Ax iff
w ||= iA : A, for everyA ∈ Ax. In the next subsection we model the states of an
OOISSby the pieces of information for the axioms defined byS.

2.3 OOIS Specifications

The axioms of an OOISSare BUPs introduced byclass definitionsof the form:

ClassC extendsC1, . . . ,Ck {
env{τ e : FC(t0);x1.C1(t1); . . . ;xk.Ck(tk);} it ptyName{SC(this,e);}MC

}
where theenvironment variablesof C aree= {x1, . . . ,xk}∪vars(t0, t1, . . . , tk), and
theclass-predicatefor C is this.C(e). In the it declaration,SC(this,e) is a SP and
ptyNameis a name for it. After theit-declaration there is a listMC of method
specifications. Methods are briefly discussed in the conclusion. We associate with
the the above class definition the following formulas.

• Theenvironment constraint

5

Ornaghi, Benini, Ferrari, Fiorentini, Momigliano

Env(C) :∀ τ e : this.C(e)→ FC(e)∧x1.C1(t1)∧·· ·∧xk.Ck(tk)
relating e to (a possible)FC(e) and stating a link to the environments of the
(possible) super-classes:

• Theclass property

PC(this,e)= and{SC(this,e) PC1(x1, t1) . . . PCk(xk, tk)}
If C has no super-classes, thenk = 0 andPC(this,e) = SC(this,e), otherwise the
properties of the super-classes are inherited according toEnv(C).

• If C is animplementation class(see Section2), we introduce theclass axiom:

Ax(C) : for{τ e|C(this,e) : PC(this,e)}
wherePC is the class property forC. No class axiom is associated with abstract
classes and interfaces, because no object can be created by them.

An OOIS is (specified by) a setSof class definitions. We associate with it the set of
first order axiomsAx(S) containing the environment constraints of all the classes
and the class axioms of all theimplementation classesof S.

Example 2.3 Below, we show the classes for the EightQueens system.exi{τ !x :
P(x)} abbreviatesexi{τ x : and{P(x);∀ τ y : P(y)→ y = x;}}.
ClassChessBoard{
it chbPty{and{ exi{Obj ! f irstq : f irstq.FirstQueen(this);}

IntRows{for{row|1..6 : exi{Obj !q : q.InQueen(this, row);}}}

exi{Obj !lastq: lastq.LastQueen(this);}}}
}
abstract ClassQueen{
env{ Obj chb; int row : chb.ChessBoard(); row∈ 0..7;}

it qPty{exi{int!col : this.inPosition(chb, row,col)∧col ∈ 0..7;}
}
abstract ClassUpQueenextendsQueen{
env{ Obj chb; int row : this.Queen(chb, row);}

it upqPty{exi{Obj !dwn: dwn.Queen(chb, row+1);}}
}
abstract ClassDownQueenextendsQueen{
env{ Obj chb; int row : this.Queen(chb, row);}

it dwqPty{exi{Obj !up : up.Queen(chb, row−1);}}
}
ClassFirstQueenextendsUpQueen{ env{Obj chb: this.UpQueen(chb,0);} }

ClassLastQueenextendsDownQueen{ env{Obj chb: this.DownQueen(chb,7);} }
ClassInQueenextendsDownQueen,UpQueen{
env{Obj chb; int row : this.DownQueen(chb, row); this.UpQueen(chb, row);}
}

6

Ornaghi, Benini, Ferrari, Fiorentini, Momigliano

According tochbPty, each row contains one queen. A queen always stands
on its row and can change its column. The first queen has only a lower queen,
the last one has only an upper queen, and the intermediate queens have both. This
in view of a search where each queen collaborates with its nearest queens to get
the next chessboard configuration so that no queen is attacked. The axiomatisation
corresponding to the EightQueens system is:

Axioms for the Environment Constraints

∀(this.FirstQueen(chb) → this.UpQueen(chb,0));

∀(this.LastQueen(chb) → this.DownQueen(chb,7));

∀(this.InQueen(chb, row) → this.UpQueen(chb, row)

∧ this.DownQueen(chb, row));

∀(this.UpQueen(chb, row) → this.Queen(chb, row));

∀(this.DownQueen(chb, row) → this.Queen(chb, row));

∀(this.Queen(chb, row) → chb.ChessBoard()∧ row = 0, . . . ,7))

Class Axioms2 :

for{| this.ChessBoard() : chbPty(this)}

for{Obj chb| this.FirstQueen(chb) : and{upqPty(chb,0) qPty(this,chb,0)}}

for{Obj chb| this.LastQueen(chb) : and{dwqPty(chb,7) qPty(this,chb,7)}}

for{Obj chb, int row| this.InQueen(chb, row) :

and{dwqPty(chb, row) upqPty(chb, row) qPty(this,chb, row)}}

2.3.1 System States
Let PC : Ax(C) be the piece of information for a class axiomAx(C) = ∀ τ x :
this.C(x) → PC(this,x). ThenPC is a (possibly empty) list of pieces of informa-
tion of the form((o, t), i) (whereo instantiatesthis). We callPC a population of
class C. We treat a population as a set. The populationP of an OO system is
the union of the populations of its classes. We say that an objecto belongs to the
populationP iff there is an information value((o, t), i) ∈ P . A populationP is
finite (an OO system has a finite set of objects) and each objecto of P occurs in
a unique information–value((o, t), i) ∈ P (an object belongs to an OO system in
a unique copy). The environment constraints ofAx(S) do not contain information
on the current state because they are closed atoms (the only information carried by
w ||= 1 : K is w |= K, and it must hold in every state). Thus, we leave them under-
stood, identify system states with populations, and define truth of system states as
follows:

2 The self-referencethis is implicitly universally quantified and we usePtyName(. . .) for the cor-
responding formula, for conciseness.

7

Ornaghi, Benini, Ferrari, Fiorentini, Momigliano

Definition 2.4 Let P be a population for an OO systemS, andw be a world–state.
Thenw ||= P : S iff:

• w ||= PC : Ax(C) for every classC of S, wherePC is the population of classC,
and

• w |= K for every environment constraintK of Ax(S).

Example 2.5 We generate a population for the EightQueen system, and a world–
statew for it. We start with a single ChessBoard-objectchb:

PChessBoard= (((chb),(f , i, l))) ∈ it(this.ChessBoard()→ chbPty(this))

We choose:

f = (q0,1), i = (((1),(q1,1)), . . . ,((6),(q6,1))), l = (q7,1)

Thus,w has to satisfy3 :

w |= ChessBoard(o) iff o = chb,

w ||= 1 : FirstQueen(q0,chb)∧∀Obj x : FirstQueen(x,chb)→ x = q0,

w ||= 1 : InQueen(qr ,chb, r)∧∀Obj x : InQueen(x,chb, r)→ x = qr for r ∈ 1..6,

w ||= 1 : LastQueen(q7,chb)∧∀Obj x : LastQueen(x,chb)→ x = q7.

A possible population for FirstQueen, InQueen, LastQueen containingq0, . . . ,q7
is:

PFirstQueen= ((q0,chb),((q1,1),(0,1))) ∈ it(Ax(FirstQueen))

PInQueen = ((q1,chb,1),((q0,1),(q2,1),(0,1)), . . . ,

(q6,chb,6),((q5,1),(q7,1),(0,1))) ∈ it(Ax(InQueen)),

PLastQueen= ((q7,chb),((q6,1),(0,1))) ∈ it(Ax(LastQueen)).

requiring that:

w ||= (0,1) : qPty(qr ,chb) for 0≤ r ≤ 7,

w ||= (qr+1,1) : dwqPty(qr ,chb) for 0≤ r ≤ 6,

w ||= (qr−1,1) : upqPty(qr ,chb) for 1≤ r ≤ 7.

Our population is

P = PChessBoard∪PFirstQueen∪PInQueen∪PLastQueen

It is aconsistent population, since a world–statew such thatw ||= P : EightQueens
exists. It represents a chessboardchb where each rowr contains the queenqr in
column 0. Other consistent populations with the same objects can be obtained, by
changing the columns of the queens.

3 and{A;B} is equivalent toA∧B if A,B are atoms, becausew ||= (1,1) : and{A;B} iff w ||= 1 :
A∧B.

8

Ornaghi, Benini, Ferrari, Fiorentini, Momigliano

3 Deriving Java Programs

It is possible to extract a Java program from an OOIS, as follows: every classC
of S is translated into a Java classJC, which represents the environment and the
pieces of information ofC and which has the methodspty() andinfo() to wrap
information values and properties into other suitable Java classes. Java does not
allow multiple inheritance. However, if we can eliminate it by dropping some
intermediate abstract classes, the translation equally works (in Example3.1, we
drop UpQueen and DownQueen). Properties are transformed in the standard form
exi{x τ : C1; . . . ;Cn}, where eachCj is either a BP or a BUP. The variablesx τ
become attributes ofJC. If Cj is an atom, a comment is generated; if it is BP, an
int attribute is generated; if it is a BUP, an auxiliary class is generated, having the
name shown in the OOIS-model (in Example3.1, IntRows).

Example 3.1 The CML class Chessboard becomes the following Java class.
import info.*;
public class ChessBoard {
//ChbPty: exi:

FirstQueen first;

LastQueen last;

//and:

//true{first.FirstQueen(this);unique(first);}

IntRows intRows = new IntRows(this);

//true{last.LastQueen(this);unique(last);}

//endPty

/************************ WRAPPERS *************************/

public ExiInfo info(){
ExiInfo info = new ExiInfo();

...//automatically generated }

public ExiPty info(){
ExiPty pty = new AndPty();

...//automatically generated }
The auxiliary class IntRows is omitted for the sake of space.ExiInfo and

ExiPty are classes of the packageinfo, which implements pieces of information.
The Java classChessBoard, together with its wrapper methods, can be automati-
cally generated starting from the corresponding CML class.

Classes generated in this way are regular Java classes that can be easily un-
derstood by a Java programmer; methods can be implemented in the usual way as
well. The classExiPty is a subclass of a classPty. A Pty-object p represents a

9

Ornaghi, Benini, Ferrari, Fiorentini, Momigliano

property and it has a methodimplies such thatp.implies(q) returns an objectm
with amap method fromit(p) into it(q). The map is correct, i.e.,w ||= i : p entails
w ||= m.map(i) : q. The algorithm for extractingm is based on a fragment of a cal-
culusC∗ for the constructive logic of the pieces of information. For lack of space,
we cannot discuss this issue here, but we briefly comment on it in the conclusions.
The map method supports correct exchange of semantically annotated data. For
example, the current state of an object can be wrapped into a piece of information
i : M and sent to different (possibly remote) interfacesR1, . . ., Rn. EachRj can use
i : M in a different way, mapping it according to its local knowledge.

4 Conclusion

Various logically based modeling languages of OO systems have been proposed,
using different formal contexts (e.g., [2,14,1,11]). Our setup is the constructive se-
mantics ofvaluation forms. This semantics is related to Medvedev’s logic of finite
problems [8] and it has been studied in [10,9]. Our aim is to design a logically
based OO modeling language for information systems, intended as software sys-
tems to store and manipulate information with anexternal meaning. So far, we
have concentrated our analysis on the way of organizing data and meaning in terms
of populations of anObject Oriented Information System(OOIS). Actually, it is
possible to translate an UML [4] class diagramD with OCL constraints into an
OOIS SD, and to represent the populations ofSD as object diagrams instantiating
D. Thus, we have an adequate expressive power. Although the work presented here
is still a preliminary study, we believe that the approach is promising. In fact below
we list some possible developments, which can turn it into useful applications. We
give also some references to related approaches.

Snapshots and Consistency
In Example2.5 we have generated a population for the EightQueens system.

Populations correspond to UML object diagrams, also called system snapshots [4].
Showing snapshots is useful to understand an OO model and there are systems en-
abling snapshot generation (e.g., [6], based on OCL [14]). One of the problems
with OO specification is consistency. For example, it is easy to build UML class
diagrams with inconsistent multiplicities. In our approach, an OOISS is consistent
iff it has a consistent populationP , andP is consistent iff there is at least an ab-
stract worldw such thatw ||= P : S. In general, the consistency of a population is
not decidable. We are studying a partial solution, requiring a restricted syntax for
atoms.

Correct Information Exchange
Information values and their meaning are distinct aspects. Pieces of information

i : P combine them according to multiple meanings. A similar idea has been de-
veloped in XML technology, where XML documents can be interpreted according

10

Ornaghi, Benini, Ferrari, Fiorentini, Momigliano

to different schemas [5]. It is possible to use this technology to wrap informa-
tion values in XML documents and to define a suitable XML formalism (similar
to XML schemas) to represent properties. This would support correct exchange of
semantically annotated data, following the trend of Semantic Web [12].

Logical Issues
Our properties can be translated into a fragment of the predicative language

of logic E∗ introduced in [10]. In E∗, atoms are represented byT-formulasT(F)
having information type 1..1, while the logical connectives introduce structured
information types. If we represent each atomF by T(F) and we replaceOr ,
And, Exi, For by the corresponding logical connectives, each property becomes
anE∗-formula and we obtain a fragment of the predicative language ofE∗. E∗ is
a maximal intermediate constructive propositional logic with a valid and complete
calculus [10]. The full predicative extension ofE∗ has not been studied yet. For our
fragment, there is a valid and complete calculusC∗ (if we abandon requirements
(i), (ii) for the world–states).

Methods and Proofs as Programs
A method specification in the class Queen is, e.g.:

exi{Obj q : or{q.upAtt(row,n);¬∃Obj q : q.upAtt(row,n);}}

q.upAtt(m,n) wherem= 0, . . . ,7

For everyn∈ 0..7, upAtt(row,n) returns(q,1) (there is an upper queenq that at-
tacks the position(row,n), whererow is an environment attribute) or(any,2) (no
such queen exists;any stands for any object). A Java implementation returns an
ExiInfo-object. SinceE∗ is constructive, it is possible to use the calculusC∗ to ex-
tract an implementation ofupAtt. C∗ has been used to define the methodincludes
(see Section3). It is possible to useC∗ to derive the implementation of methods,
but we have not developed this idea yet, although this is closely related to the well
known idea of proofs as programs [3].

Implementation Issues
Our reference language is Java, but other OO languages may be employed as

well. So far, we only have a partial prototypical implementation. The translation
from CML classes into corresponding Java classes has been defined but not im-
plemented yet (we do it manually), and our JL-syntax is still unstable. We have
implemented a hierarchy of classes to wrap information values and properties (see
Example3.1). The methodincludes provides a basic information transforma-
tion. To adapt it to different knowledge contexts, differentWKB-packages can
be imported, containing (a representation of) pre-provedclassical lemmasof the
form Γ `cl F , whereF is an atom (atoms have aC∗-proof iff they have a classical
proof). Classical lemmas can be formally proven or informally stated. An example
is Person(x) `cl Man(x)∨Woman(x) (see Example2.2).

11

Ornaghi, Benini, Ferrari, Fiorentini, Momigliano

References

[1] M. Abadi and L. Cardelli.A Theory of Objects. Springer-Verlag, New York, 1996.

[2] A.L. Baker, C. Ruby, and G.T. Leavens. Preliminary design of JML: A behavioural
interface specification language for Java. Technical report 98-06, Department of
Computer Science, Iowa State University, 1998.

[3] J.L. Bates and R.L. Constable. Proofs as programs.ACM Transactions on
Programming Languages and Systems, 7(1):113–136, January 1985.

[4] G. Booch, J. Rumbaugh, and I. Jacobson.The Unified Modeling Language User
Guide. Addison-Wesley, Reading, Massachusetts, USA, first edition, 1999.

[5] D. C. Fallside (Eds). “XML Schema Part 0: Primer”. W3C Recommendation, May
2001.http://www.w3.org/TR/xmlschema-0.

[6] M. Gogolla, M.Richters, and J. Bohling. Tool support for validating UML and OCL
models through automatic snapshot generation. InSAICSIT ’03, pages 248–257, 2003.

[7] C. Larman. Applying UML and Patterns. Prentice Hall, Upper Saddle River, NJ,
1998.

[8] Ju.T. Medvedev. Finite problems.Soviet Mathematics Doklady, 3:227–230, 1962.

[9] P. Miglioli, U. Moscato, M. Ornaghi, S. Quazza, and G. Usberti. Some results on
intermediate constructive logics.Notre Dame Journal of Formal Logic, 30(4):543–
562, 1989.

[10] P. Miglioli, U. Moscato, M. Ornaghi, and G. Usberti. A constructivism based on
classical truth.Notre Dame Journal of Formal Logic, 30(1):67–90, 1989.

[11] D. Rémy. Using, understanding, and unravelling the OCaml language. From practice
to theory and vice versa.Applied Semantics. Advanced Lectures. Lecture Notes in
Computer Science, 2395:413–537, 2002.

[12] A. Sheth. DB-IS research for Semantic Web and enterprises. Brief history
and agenda. LSDIS Lab, Computer Science, University of Georgia, 2002.
http://lsdis.cs.uga.edu/SemNSF/Sheth-Position.doc.

[13] A.S. Troelstra. Aspects of constructive mathematics. In J. Barwise, editor,Handbook
of Mathematical Logic. North-Holland, 1977.

[14] J. Warmer and A. Kleppe.The Object Constraint Language: Precise Modelling with
UML. Object Technology Series. Addison-Wesley, Reading/MA, 1999.

12

	Introduction
	The logical model of OOIS
	System Signatures and Meaning
	Properties, Information Values and Pieces of Information
	OOIS Specifications

	Deriving Java Programs
	Conclusion
	References

