
MutantChick: Type-Preserving Mutation Analysis for
Coq

Matteo Cavada, Andrea Colò and Alberto Momigliano

DI, Università di Milano

Abstract. We present MutantChick, a mutation analysis tool for Coq, to be
used in combination with QuickChick to evaluate the fault detection capability
of property-based testing in a proof assistant. Mutation analysis of Coq theories
is implemented via metaprogramming with MetaCoq and it is by construction
type-preserving.

1 Introduction

Formal verification of software via (interactive) theorem proving gives the highest
level of assurance, but it is still very labor-intensive. This effort may be further-
more wasted in the design phase of a software system, where mistakes and changes
are likely to occur both at the level of the specification and of the implementation.
Testing/validation/model-checking can ameliorate the situation by finding faults, in a
mostly “push-button” way and help refining the spec/code until theorem proving can
start. Even so, when do we stop testing and start proving? This is analogous to asking
when to stop testing in the traditional software cycle and release the software itself.
While taking into the right consideration Dijkstra’s admonishments, in practical terms
it much depends on how good our testing suite is.

In this paper we fix our validation technique to be property-based testing [10]
(PBT), which tries to refute executable specifications against automatically generated
data, typically in a pseudo-random way. Once the idea broke out in the functional
programming community with QuickCheck, it spread to most programming languages
and turned also in a commercial enterprise [12].

We can view PBT as a testing suite that consists of a set of properties plus a data
generation strategy : while PBT tools vary in those strategies and in the amount of
automation they offer, when dealing with random generation uniform distributions are
rarely the most effective choice and the art of PBT resides in writing very sophisticated
generators — see [11] for an intimidating example. But, how do we assess the fault
detection capability of such a testing suite? If it stops finding new counterexamples,
are we willing to consider the system-under-test ready for verification?

Mutation analysis [13] (MA) aims to evaluate software testing techniques with a
form of white box testing, whereby a source program is changed in a localized way by
introducing a single (syntactic) fault. The resulting program is called a “mutant” and
hopefully it is also semantically different from its ancestor. A testing suite should rec-
ognize the faulted code, which is known as “killing” the mutant. The higher the number
of killed mutants, the better the testing suite. While typically used in combination with
unit testing, MA fits fairly well with PBT (as proposed in [17]) and, in fact, in the
literature PBT tools are evaluated with manually inserted faults (e.g., the PLT-redex
benchmark suite, see http://docs.racket-lang.org/redex/benchmark.html).

http://docs.racket-lang.org/redex/benchmark.html

On the verification side, Coq (https://coq.inria.fr) is one of the leading proof
assistants, which has shown its color both in formalizing general mathematics (see the
proof of the Odd Order Theorem) and in specific domains such as the one dearest to
our heart, namely the semantics of programming languages ([18]).

Coq is an extremely powerful logic, which accommodates programming, specifica-
tion and proving in a constructive setting. In accordance with the Peter Parker principle
“with great power comes great responsibility”, PBT in such an environment is no small
feat: QuickChick ([19]), while under active developments ([16,15]), brings in additional
challenges as we touch upon in the next Section.

This is where MutantChick comes in: MutantChick is a mutation analysis tool for
Coq theories, whose main application is evaluating the “oracle adequacy” of PBT with
QuickChick. We accomplish this in a purely logical way via meta-programming with
MetaCoq [20]. Since any MA tool is as good as the mutation operators it implements,
we provide a DSL to specify and compute type-preserving mutation operators, sup-
porting both the functional and the relational aspects of Coq: we also give the users
the possibility to define their own. Differently from related tools ([17,4,8]), our guid-
ing principle insists that operators are not just grammatical rules that injects faults,
but must preserve types, so that any resultant mutant will type-check by construc-
tion; thanks to Coq’s extremely strong type system, this also helps in reducing the
combinatorial explosion intrinsic in operators application.

What MutantChick does not (yet) do is the full automation of the cycle of mutant
generation, testing and scoring, in the sense that tools for imperative programming
languages support ([13]). This is problematic, if one stays within the realm of a pure
language such as (Meta)Coq.

We acknowledge that this short paper may be hard to read and therefore we have
provided Appendix A and B with additional information. We assume some familiarity
with Coq and the basics of PBT and refer to to the relevant chapter in Software Founda-
tions https://softwarefoundations.cis.upenn.edu/qc-current/ for QuickChick
and to [6] for testing the case studies we mention. Further, we will use MetaCoq as a
black box and will describe only some of the features of MutantChick without diving
at all into its implementation. The tech report [3] and the repo (https://bitbucket.
org/matteo_cavada/tesi/src/master/mutantChick/) give full details. The file demo
.v therein offers a gentle introduction to MutantChick’s main features.

2 Running Example

Our main interest is verification in a particular domain: the mechanization of the meta-
theory of programming languages (PL) and related calculi ([9]). As any practitioner
may testify, the relevant properties are well known and have mathematically shallow
proofs. The difficulty lies in the potential magnitude of the cases one must consider and
in the trickiness that some encodings require. Here, very minor mistakes, even at the
level of what we would consider a typo, may severely frustrate the verification effort,
to the point to make it not cost-effective.

As a running example, we take a very simple model of a PL, a typed arithmetic lan-
guage (https://softwarefoundations.cis.upenn.edu/plf-current/Types.html),
featuring numerals with predecessor and Booleans with if-then-else and test-for-zero.
For the sake of this Section, we concentrate on a rule-based presentation (akin to logic

https://coq.inria.fr
https://softwarefoundations.cis.upenn.edu/qc-current/
https://bitbucket.org/matteo_cavada/tesi/src/master/mutantChick/
https://bitbucket.org/matteo_cavada/tesi/src/master/mutantChick/
https://softwarefoundations.cis.upenn.edu/plf-current/Types.html

programs) of the typing rules, but our approach covers the functional rendition as well.
As a property, we consider the progress lemma, which ensures that if a term is well
typed, then either it is a value or it can take a step; it is one of the building blocks in
Milner’s motto, for which a well-typed program cannot go wrong.

The typing rules are encoded as an Inductive definition has_type to be read “term
t has type T” (see Appendix A for the other definitions):

Inductive has_type: tm → typ → Prop :=
T_Tru: has_type ttrue TBool

| T_Fls: has_type tfalse TBool

| T_Test: ∀ t1 t2 t3 T, has_type t1 TBool → has_type t2 T → has_type t3 T →
has_type (tif t1 t2 t3) T

| T_Zro: has_type tzero TNat

| T_Scc: ∀ t1, has_type t1 TNat → has_type (tsucc t1) TNat

| T_Prd: ∀ t1 has_type t1 TNat → has_type (tpred t1) TNat

| T_Iszro: ∀ t1, has_type t1 TNat → has_type (tiszero t1) TBool.

Theorem progress: ∀ t T, has_type t T → value t ∨ ∃ t’, step t t’.

We now introduce some mutations that should mirror typical mistakes while de-
signing a PL artifacts — see for example the manual mutations in the cited PLT-Redex
benchmark suite. A first mutation 1 represents a simple typo where we have swapped
TBool for TNat in the test-for-zero rule:

. . . | T_Iszro_M : ∀ t1 : tm, has_type_M1 t1 TBool → has_type_M1 (tiszero t1) TNat.

The second one corresponds to having forgotten an hypothesis in the rule for if-then-
else, namely that the test t1 is a Boolean:

. . . | T_Test_M: ∀ t1 t2 t3 T, has_type_M2 t2 T → has_type_M2 t3 T → has_type_M2 (tif
t1 t2 t3) T

Finally, suppose instead we add an additional rule to the given ones (this is exercise 2
from Types.html):

. . . | T_SccB: ∀ t, has_type_M3 t TBool → has_type_M3 (tsucc t) TBool.

All mutants do not satisfy progress: it would stand to reason that a PBT tool
should find the relevant counterexamples, as say αCheck does quite easily and without
any complicated setup [5]. However, this is not immediately the case with QuickChick.
Coq is, under the Curry-Howard view, a version of constructive higher-order logic,
enriched with (co)inductive types and universe polymorphism, where only pure total
functional programs are permitted, while allowing highly undecidable specifications.
This duality is reflected in the type Set of computations and Prop of arbitrary propo-
sitions. If we wish to test a conjecture, it must be shown effectively computable, in
QuickChick’s terms it is a Checkable property. There are two ways to go about it: first,
if the notion under test is defined relationally, that is at Prop, we can manually pro-
vide a proof that it is indeed decidable. In certain simple cases such as the has_type

relation, we can rely on the rather unpredictable tool for automatic derivations of
generators out of Inductive definitions [16]. The second and fail-safe way is to trans-
late every spec into a Boolean-valued function: since in Coq every such function must
be total, decidability and therefore Checkability is guaranteed. This approach has its

1 Each mutation yields a new Inductive definition named by convention has_type_Mn.

drawbacks, since it needs to explicitly address the partiality of rule-based specifica-
tions and to accommodate Coq’s rather temperamental totality checker. Still, even
stating the progress property so that it can be tested is not immediate, neither with
automatic derivation (Definition progressST), nor with a custom-made generator
(Definition progressGen), see Appendix A and [6].

All these layers point to the utility of a MA tool to assess the “oracle adequacy” of
QuickChick. In the next Section we will see how MutantChick can derive those mutations.
Note that in our example properties (viz. progress) are trusted. This is generally the case
for PL semantics, since they come from the theorems that should hold for the underlying
calculus; however, a large number of surviving mutants may also suggest a possible
under-specification in such properties or a fault in its testable implementations. Finally,
since properties are just Coq terms, our tool could mutate them as well, although we
do not see this as particularly useful.

3 MutantChick

Our tool is based on MetaCoq [20], a library that provides rich meta-programming
features for Coq. Among those, we will use 1) the (anti)quotation mechanism: quoting
a Coq term t, denoted by <% t %>, induces a bijection between Coq kernel terms and
a deep embedding in Coq itself of the syntax of the terms of the underlying Calculus of
(Co)Inductive Constructions; the embedding is realized as an Inductive definition of
the type term; 2) a reification of the static and dynamic semantics of the representation
of the calculus, providing a hook for checking well-typedness of quoted terms.

For example, quoting the lambda expression fun x ⇒ 2 + hd x [9;8;7] that
sums 2 to the head of a given list returns the following abstract syntax tree (AST),
which we have significantly abridged by using a number such as 2 to stand for its
quotation — keep in mind that in Coq naturals and lists are not built-in, but obtained
as inductive types.

(tLambda (nNamed "x")
(tInd {| inductive_mind := "Coq.Init.Datatypes.nat"; inductive_ind := 0 |} [])
(tApp (tConst "Coq.Init.Nat.add" [])

[2; tApp (tConst "Coq.Lists.List.hd" [])
[tInd {| inductive_mind := "Coq.Init.Datatypes.nat"; inductive_ind := 0 |}

[];
tRel 0;
tApp (tConstruct {| inductive_mind := "Coq.Init.Datatypes.list";

inductive_ind := 0 |} 1 [])
[tInd {| inductive_mind := "Coq.Init.Datatypes.nat"; inductive_ind := 0

|} [];
tApp (tConstruct {| inductive_mind := "Coq.Init.Datatypes.nat";

inductive_ind := 0 |} 1 []) [9;8;7]]]]))

To access and modify Coq’s terms and environment, MetaCoq provides a monad
(TemplateMonad) in which it is possible (among other things) to describe quoting
and unquoting actions of Coq terms, as well as other (few) actions with side-effects,
such as raising an exception and inserting new terms inside Coq’s environment; these
monadic meta-programs, once invoked with the Run TemplateProgram command, will
be executed by an interpreter inside the OCaml environment.

Kind Operator Description

General
Substitute Substitutes a term with another
Swap Exchanges two terms
IfThenElse Exchanges then and else branch
DelImplications Deletes assumption
UserDefined User defined operator

Inductive
NewConstructor Adds new constructor
SubConstructor Substitutes a constructor
OnConstructor Maps an operator over a constructor
OnConstructors Maps an operator over an inductive def.

Table 1. List of MutantChick’s operators.

MutantChick aims to devise mutation operators for a proof assistant, here Coq (but
they would also be relevant for other systems such as Lean or Isabelle/HOL), which
embodies both functional and relational specifications, with a particular attention to
our intended domain of application. Those operators specify the mutations that the tool
will inject, trying to simulate natural occurring bugs. This is justified by the “competent
programmer assumption” [13], according to which the latter tends to develop programs
close to the correct version and thus the difference between current and correct code
for each fault is small.

An MA tool is as effective as its operators are relevant. Historically, MA comes
from imperative languages and the operators thereby still owe to those initially de-
vised for FORTRAN. Even operators proposed for declarative programs ([8,17]) make
only partial sense, being untyped and too linked to the operational semantics of the
programming language. Usable examples comprise arithmetic and relational operator
mutation, say turn × into + and < into ≤ and constant mutations, say 0 into 1.

Table 3 describes, at a high level, the operators currently implemented in Mu-
tantChick. We have two (non-disjoint) main categories: general operators, working on
any Coq term, and inductive ones, which are particularly suited to relationally defined
judgments.

The general syntax to mutate a terms is as follow (see Appendix B for the BNF of
the DSL):

Run TemplateProgram (
Mutate <% term_to_mutate %>

using (operator)
named "new_name").

Let us see a classic arithmetic mutation: we can use simple substitution t1 ==> t2

to substitute every occurrence of t1 with t2. This operator is internally defined as an
inductive definition Substitute {A} (t1 t2: A), which is indexed by the type A of
the terms in order to ensure that the substitution is type-preserving. For example:

Run TemplateProgram (
Mutate <% 4 ∗ 5 %>

using (Init.Nat.mul ==> Init.Nat.add)
named "out").

Print out.

out = 4 + 5
: nat

All the generic operators works not only on plain Coq terms, but also on Definition,
Fixpoint,Theorem etc.

Since a quoted term is a (rather large) AST, a mutation operator is implemented
by two components: 1) a search phase, in which we find all locations inside the tree of
the to-be-mutated term; this is accomplished by a function check :: term → bool

that establishes if a given quoted term is suitable for mutation; 2) a mutation phase,
in which a transformation function trans :: term → term is applied to the terms
in the locations previously identified.

An important optimization in MA is random generation of mutants[13]: since a
given mutation can be applied multiple time in the same term, it is reasonable to select
only a sample thereof. Again, a pure language such as Coq cannot rely on an external
pseudo-random number generator, hence we had to deploy our own as a Linear-Feedback
Shift Register on 7 bits; this generates pseudo-random sequences of numbers starting
from a seed (at this stage provided by the user).

The DSL offers three choices: 1) mutate everywhere; 2) pick mutations with prob-
ability p, i.e., generate a random number for every mutable location in the AST: if
it is bigger then a certain threshold (chosen by the user), then collect the mutant;
3) pick a maximum of n mutations, i.e., maximum of n location are drawn among all
the coordinates found in the search phase.

Rather than seeing each operator in details (for which we refer once again to [3]),
we detail how MutantChick realizes the mutations of the previous Section.

For the typo, we use the bidirectional substitution Swap t1 t2; it exchanges the
order of appearance of t1 and t2 inside an expression and is defined in term of
Substitute. Note that t1 and t2 can be (bound) variables, which mirrors a large
category of errors.

Run TemplateProgram (
Mutate <% ∀ t1, has_type t1 TNat → has_type (tiszero t1) TBool. %>

using (Swap <% TBool %> <% TNat %>)
named "T_Iszro_M").

We could have achieved this and the next mutation with the operator SubConstructor
although with less automation.

DelImplications mirrors missing assumptions by non-deterministically removing
implications (technically, dependent products); in the following case it will yield 6
different non-isomorphic mutants.

Run TemplateProgram (
Mutate <% ∀ t1 t2 t3 T, has_type t1 TBool → has_type t2 T → has_type t3 T →

has_type (tif t1 t2 t3) T %>
using (DelImplications)
named "T_Test_M").

Interestingly, we can make this require less interaction by using the OnConstructors

combinator that maps the operator over the whole relation; since this could generate
a lot of mutants, we use random choice to select a few.

Run TemplateProgram (
Run TemplateProgram (

Mutate <% has_type %>
using (OnConstructors DelImplications)
named "has_type_mut"

generating (RandomMutations 34 64)).

Finally, we can add a new constructor to an Inductive definition via NewConstructor

Run TemplateProgram (
Mutate <% has_type %>

using (NewConstructor "T_SccB"

<% fun hastype_M1 ⇒ ∀ t, has_type_M1 t TBool →
has_type_M1 (tsucc t) TBool %>)

named "hastype_M1").

4 Conclusions, related and future work

In this short paper we have sketched the rationale and the high level design of Mu-
tantChick, a mutation analysis tool for the Coq proof assistant. We have advocated the
usefulness of such a tool, given the popularity that testing, in particular PBT, is hav-
ing in the Coq world, in terms of applications ([11,1]) and development ([16,15]). Still,
mutation testing, by which we mean the improvement of a testing suite via MA, has
been lagging behind, being only informally and manually used to evaluate PBT. The
exception is mCoq [4], which follows a very different philosophy from ours: it exports the
AST of a Coq term as an S-expression thanks to an OCaml serializer and then applies
mutations to the sexp using a tool written in Java. Following this choice, it cannot
enforce that mutation operators are type-preserving, nor can they be easily extended
by the user. In fact, the hardwired operators are quite limited, being mostly concerned
with functional programming. We also do not share mCoq’s motivation, which are not
PBT but mutation proving, whereas mutations are introduced in definitions to see if
the proof scripts of related theorems still hold: if they do, it means that those defini-
tions are under-specified, if not unused. It seems to us a very big hammer for such a
small nail.

We have evaluated the tool on two case studies ([6,3]): the arithmetic language and
much more significantly, Leroy & Appel’s list-machine benchmark [2]. In both, we have
realized the mutations described in the literature [14], implemented the relevant gen-
erators and tested various forms of type soundness with QuickChick. The list-machine
case study is particularly meaningful: the properties under test have extremely sparse
precondition, which forces us to implement complex generators with intricated heuris-
tics built-in, whose fault detection capability which we would be hard to gauge without
a MA tool.

The main limitation of MutantChick is performances: mutation analysis is compu-
tationally expensive and (Meta)Coq is definitely not an efficient general-purpose pro-
gramming language, neither w.rt. memory consumption nor the boilerplate required

to generate and test mutants in a completely automated way. We have managed to
use operators such as ==> to percolate mutated terms within all the definitions that
depend on them in a Coq theory, but to address the whole mutation cycle fully, we
would need, among others, to read and write files, which is out of Coq’s remit.

To address performances, a possibility is the extraction to OCaml of the MetaCoq
code responsible for the heaviest computations: this is possible but not trivial (see
Sec. 5 of [20]). A more radical solution would be to port MutantChick to Elpi [7], the
λProlog interpreter embedded inside Coq, and exploit full-range logic programming.

References

1. D. Annenkov, M. Milo, J. B. Nielsen, and B. Spitters. Verifying, testing and running
smart contracts in concert.

2. A. W. Appel, R. Dockins, and X. Leroy. A list-machine benchmark for mechanized
metatheory. J. Autom. Reasoning, 49(3):453–491, 2012.

3. M. Cavada. Property-based testing and mutation analysis in Coq. Technical report, DI,
University of Milano, 2020. http://dx.doi.org/10.13140/RG.2.2.18766.69445.

4. A. Çelik, K. Palmskog, M. Parovic, E. J. G. Arias, and M. Gligoric. Mutation analysis
for coq. In ASE, pages 539–551. IEEE, 2019.

5. J. Cheney and A. Momigliano. αCheck: A mechanized metatheory model checker. TPLP,
17(3):311–352, 2017.

6. A. Colò. Property-based testing of the list-machine benchmark with QuickChick. Tech-
nical report, DI, University of Milano, 2020. 10.13140/RG.2.2.19283.60962.

7. C. Dunchev, F. Guidi, C. Sacerdoti Coen, and E. Tassi. ELPI: Fast, Embeddable, λProlog
Interpreter. In Proceedings of LPAR, Suva, Fiji, Nov. 2015.

8. A. Efremidis, J. Schmidt, S. Krings, and P. Körner. Measuring coverage of prolog programs
using mutation testing. CoRR, abs/1808.07725, 2018.

9. M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with PLT Redex. MIT
Press, 2009.

10. G. Fink and M. Bishop. Property-based testing: a new approach to testing for assurance.
ACM SIGSOFT Software Engineering Notes, pages 74–80, July 1997.

11. C. Hritcu, L. Lampropoulos, A. Spector, A. de Amorim, M. Dénès, J. Hughes, B. Pierce,
and D. Vytiniotis. Testing noninterference, quickly. J. Funct. Program., 26:e4, 2016.

12. J. Hughes. Quickcheck testing for fun and profit. In PADL’07, LNCS, pages 1–32, Berlin,
Heidelberg, 2007. Springer-Verlag.

13. Y. Jia and M. Harman. An analysis and survey of the development of mutation testing.
IEEE Trans. Softw. Eng., 37(5):649–678, Sept. 2011.

14. F. Komauli and A. Momigliano. Property-based testing of the meta-theory of abstract
machines: an experience report. In CILC, volume 2214 of CEUR, pages 22–39, 2018.

15. L. Lampropoulos, M. Hicks, and B. C. Pierce. Coverage guided, property based testing.
Proc. ACM Program. Lang., 3(OOPSLA):181:1–181:29, 2019.

16. L. Lampropoulos, Z. Paraskevopoulou, and B. C. Pierce. Generating good generators for
inductive relations. POPL, pages 1–30, 2017.

17. D. Le, M. A. Alipour, R. Gopinath, and A. Groce. MuCheck: an extensible tool for
mutation testing of Haskell programs. In ISSTA, pages 429–432. ACM, 2014.

18. X. Leroy. Formal verification of a realistic compiler. CACM, 52(7):107–115, 2009.
19. Z. Paraskevopoulou, C. Hriţcu, M. Dénès, L. Lampropoulos, and B. C. Pierce. Founda-

tional property-based testing. In ITP, pages 325–343. Springer, 2015.
20. M. Sozeau, A. Anand, S. Boulier, C. Cohen, Y. Forster, F. Kunze, G. Malecha,

N. Tabareau, and T. Winterhalter. The MetaCoq project. J. Autom. Reasoning, pages
1–53, 2020.

http://dx.doi.org/10.13140/RG.2.2.18766.69445
http://dx.doi.org/10.13140/RG.2.2.19283.60962

A Listings of the Typed Arithmetic Language

In this section we list the code we have selectively quoted in Section 2. For the sake of
testing the dynamic semantics is encoded functionally (so that it is trivially a decidable
boolean property).

Inductive tm : Type := | ttrue : tm | tfalse : tm | tif : tm → tm → tm → tm

| tzero : tm | tsucc : tm → tm | tpred : tm → tm | tiszero : tm → tm.

Inductive typ : Type := | TBool : typ |TNat : typ.

Fixpoint isnumericval (t:tm) : bool :=
match t with
| tzero ⇒ true
| tsucc t1 ⇒ isnumericval t1

| _ ⇒ false
end.

Fixpoint isval (t:tm) : bool :=
match t with
| ttrue ⇒ true
| tfalse ⇒ true
| t ⇒ isnumericval t

end.

Fixpoint stepF (t:tm) : option tm :=
match t with
| tif ttrue t2 t3 ⇒ ret t2

| tif tfalse t2 t3 ⇒ ret t3

| tif t1 t2 t3 ⇒
t1’ ← stepF t1 ;;
ret (tif t1’ t2 t3)

| tsucc t1 ⇒
t1’ ← stepF t1 ;;
ret (tsucc(t1’))

| tpred tzero ⇒ ret tzero

| tpred (tsucc nv1) ⇒
if (isnumericval nv1) then ret nv1 else
t1’ ← stepF nv1 ;;
ret (tpred(tsucc t1’))

| tpred t1 ⇒
t1’ ← stepF t1 ;;
ret (tpred t1’)

| tiszero tzero ⇒ ret ttrue

| tiszero(tsucc nv1) ⇒
if (isnumericval nv1) then ret tfalse else
t1’ ← stepF nv1 ;;
ret (tiszero(tsucc t1’))

| tiszero t1 ⇒
t1’ ← stepF t1 ;;
ret (tiszero t1’)

| _ ⇒ None

end.

Definition canStep (e:tm) : bool :=
match stepF e with
| Some _ ⇒ true
| None ⇒ false
end.

Next, we list the code of a generator for well-typed terms of size n, which heavily relies
on QuickChick’s generators combinators:

Fixpoint gen_term_size (n:nat) (t:typ) : G tm :=
match n with
| 0 ⇒

match t with
| TNat ⇒ returnGen tzero

| TBool ⇒ oneOf [returnGen ttrue; returnGen tfalse]
end
| S n’ ⇒
m ← choose (0, n’);;
match t with
| TNat ⇒
oneOf [returnGen tzero;

liftGen tsucc (gen_term_size (n’−m) TNat) ;
liftGen tpred (gen_term_size (n’−m) TNat) ;
liftGen3 tif (gen_term_size (n’−m) TBool)

(gen_term_size (n’−m) TNat)
(gen_term_size (n’−m) TNat)]

| TBool ⇒
oneOf [returnGen ttrue; returnGen tfalse;

liftGen tiszero (gen_term_size (n’−m) TNat);
liftGen3 tif (gen_term_size (n’−m) TBool)

(gen_term_size (n’−m) TBool)
(gen_term_size (n’−m) TBool)]

end
end.

To give a rough idea on how properties are encoded, we report two Checkable
definitions of progress, the first using the custom generator gen_term, the second based
on automatic derivation of generators for types forAll arbitrary (fun tau : typ

⇒ . . .) and of well typed terms out of the Inductive definition, namely forAll (

genST (fun t ⇒ has_type t tau)). For a full explanation, please refer to [6].

Definition progressGen :=
forAll arbitrary (

fun tau ⇒
forAll (gen_term tau)
(fun t ⇒
isval t || canStep t)).

Definition progressST :=
forAll arbitrary (fun tau ⇒
forAll (genST (fun t ⇒ has_type t

tau))
(fun mt ⇒
match mt with
| Some t ⇒ (isval t || canStep t)
| None ⇒ false
end)).

B MutantChick’s DSL

A BNF grammar of the DSL and of the operators is as follows:

〈root〉 ::= ‘Mutate’ 〈MetaTerm〉 ‘using’ 〈op〉 ‘named’ 〈string〉 {〈random〉}
| ‘MultipleMutate’ 〈MetaTerm〉 ‘using’ 〈opList〉 ‘named’ 〈string〉 {〈random〉}

〈random〉 ::= ‘generating’ 〈randomConfig〉

〈randomConfig〉 ::= ‘AllMutations’
| ‘RandomMutations’ 〈nat〉 〈nat〉

〈string〉 ::= A Coq string

〈checkFunction〉 ::= A Coq function of type term → bool

〈transFunction〉 ::= A Coq function of type term → term

〈coqExpr〉 ::= Any Coq expression

〈MetaTerm〉 ::= ‘<%’ 〈coqExpr〉 ‘%>’

〈op〉 ::= 〈coqExpr〉 ‘==>’ 〈coqExpr〉
| ‘Swap’ (〈string〉 | 〈metaTerm〉) (〈string〉 | 〈metaTerm〉)
| ‘IfThenElse’
| ‘DelImplications’
| ‘NewConstructor’ 〈string〉 〈metaTerm〉
| ‘SubConstructor’ 〈string〉 〈string〉 〈metaTerm〉
| ‘OnConstructor’ 〈string〉 〈op〉
| ‘OnConstructors’ 〈op〉
| ‘UserDefined’ 〈checkFunction〉 〈transFunction〉

Mutate takes four arguments: the expression to mutate, the operator, the base-name
for the newly generated definitions and an optional arguments indicating whether to
use random selection or not. MultipleMutate is identical to Mutate, but it accepts a
list of operators.

	MutantChick: Type-Preserving Mutation Analysis for Coq

