A constructive approach to testing model transformations

Camillo Fiorentini,! Alberto Momigliano,1
Mario Ornaghi,' and Iman Poernomo?

! Dipartimento di Scienze dell’Informazione, Universita degli Studi di Milano, Italy
{fiorenti,momiglia, ornaghi}@dsi.unimi.it
2 Department of Computer Science, King’s College London, Strand, London WC2R2LS, UK
iman.poernomo@kcl.ac.uk

Abstract. This paper concerns a formal encoding of the Object Management Group’s
Complete Meta-Object Facility (CMOF) in order to provide a more trustworthy
software development lifecycle for Model Driven Architecture (MDA). We show
how a form of constructive logic can be used to provide a uniform semantics
of metamodels, model transformation specifications, model transformations and
black-box transformation tests. A model’s instantiation of a metamodel within the
MOF is treated using the logic’s realizability relationship, a kind of type inhabita-
tion relationship that is expressive enough to characterize constraint conformance
between terms and types. These notions enable us to formalize the notion of a
correct model instantiation of a metamodel with constraints. We then adapt previ-
ous work on snapshot generation to generate input models from source metamodel
specification with the purpose of testing model transformations.

1 Introduction

While model transformations have the potential to radically change the way we write
code, the actual development of transformations themselves should be conducted ac-
cording to standard software engineering principles. That is, transformations need to be
either certified via some kind of formal method or else developed within the software de-
velopment lifecycle. Currently the latter is the norm and, consequently, effective testing
techniques are essential.

However, as observed in [3], the field currently lacks adequate techniques to support
model transformation testing: testing techniques for code do not immediately carry across
to the model transformation context, due to the complexity of the data under consider-
ation [7]. In fact, test case data (test models) consists of metaobjects that conform to a
given metamodel, while satisfying the precondition of the transformation’s specification
and additional constraints employed to target particular aspects of the implementation’s
capability. A metamodel itself has a particular structural semantics, consisting of a range
of different constraints over a graph of associated metaclasses. It is therefore a non-trivial
task to automatically generate a suitable range of instantiating metaobjects as test data.

The subject of this paper is a uniform framework for treating metamodels, model
transformation specification and the automation of test case generation of data for black-
box testing of model transformations to validate their adherence to given specifications.
We argue that such a uniform treatment is necessary for ensuring trusted testing of model
transformations. Transformations are powerful and, consequently, dangerous when wrong:

this is due to the systematic, potentially exponential, range of errors that a single bug in
a transformation can introduce into generated code. But this danger can be counter-acted
by effective model transformation testing, which demands that test models 1) are actual
instances of their classifying metamodels and 2) satisfy the transformation specification
preconditions and the tester’s given contractual constraints for generation. In a standard
approach, a number of different languages and systems may be involved: the MOF for
defining metamodel types and constraints, a model transformation specification and im-
plementation language and a system for generating test models that meet demands 1) and
2) above. Some of these paradigms may be conflated, but in general there will be some
approaches with an inherent semantic gap. For example, one may employ Kermeta to de-
fine transformations and their specification, with MOF metamodels imported separately:
atest case generation framework might be written in the former language, but would have
its own separate semantics for understanding metamodel instantiation and the meaning of
a transformation specification. As a result of employing semantically distinct languages
and systems, one may end up without a formal guarantee that the generation approach
actually does what it is meant to do.

This paper offers such a formal guarantee by employing a uniform formalism for
representing MOF-based models and metamodels and their interrelationship (Section 2),
model transformation specification and implementation and test-case generation (Sec-
tion 3). We employ constructive logic to do this, since this formalism is inherently en-
dowed with the ability to treat (meta)data, functions and their logical properties uni-
formly. Our encoding in logic is inspired by the relationship between models-as-terms
and metamodels-as-types introduced in [14] following the Curry-Howard paradigm. The
logic language corresponds to the metalevel, i.e., metamodels are represented by special
logical formulae that satisfy the following property: if Fj, is the formula representing a
metamodel M, then terms of type Fy,, which we call information terms, are encodings of
the (valid) metamodel instances of M. Thus test case generation can be seen as informa-
tion terms generation and the transformations themselves are specified as relationships
between those terms.

Our work adheres to the transformation development approach of Jezequel et al.,
where design-by-contract and testing are used as a means of increasing trust [17]. The
idea is that a transformation from models in a source language SL into model in a tar-
get language TL is equipped with a contract, consisting of a pre-condition and a post-
condition. The transformation is tested with a suitable data set, consisting of a range of
source models that satisfy the pre-condition, to ensure that it always yield target mod-
els that satisfy the post-condition. If we produce an input model that violates the post-
condition, then the contract is not satisfied by the transformation and the transformation
needs to be corrected. Our view of black-box testing of model transformations follows
the framework given in Fig. 1, where a transformation T'r takes a source model SM as in-
put, written in a source modelling language SL, and outputs a target model 7'M, written in
a target language TL. The transformation is defined as a general mapping from elements
of the SL that satisfy the pre-condition to elements of the 7L that are required to satisfy
the post-condition. A test case generator produces an appropriate set of source models:
the transformation can then be tested by checking that each of the resulting target models
preserve the contract (more precisely, are consistent with it). In our uniform approach we
use the contract itself as an oracle. This does not entail, in general, that the contract can

test case Tranformation Specification
generator SL+pre(SL) provide Spec = pre(SL) + post(SL,TL)
snapshot constraints output models
checked against Spec

snapshots define
test models an implementation Tr

TL

SL
Source Model Transformation Target model
model SM Tr: SL->TL TM=Tr(SM)

Fig. 1. Framework for testing transformation against contractual specifications

be used to perform the transformation. For example, it might express a loose relation,
admitting a family of consistent implementations.

This paper thus proposes a solution to the open problem of how to derive in a fully
declarative way an appropriate data set of source models for a given source language,
pre-condition, post-condition and transformation. We will show how constructive logic
enables a form of meta-object snapshot generation to solve this problem. Our approach
is inspired by ordinary object-oriented snapshot generation [13], where objects are gen-
erated to satisfy given class specifications, for analogous same validation purposes.

2 A constructive encoding of the MOF

Model transformation test cases are generated according to constraints given over MOF-
based metamodels. Our approach takes advantage of an approach to the uniform rep-
resentation of both metamodel structure and semantics in relying on constructive logic,
after the fashion of CooML’s approach [6, 13] and the constructive encoding of the earlier
MOF in [14]. This constructive encoding has been shown to have a number of advantages
as a formalisation of the MOF. In particular, realizability semantics can naturally treat
metamodel instantiation, where classifiers are considered as instances of other classifiers:
a feature that is prominent in the MOF itself (model instances are classification schemes,
but themselves instantiate a metamodel scheme). This section sketches the principle of
the constructive encoding, showing how the structure of metamodels can be understood
as set theoretic signatures with a constructive realizability semantics to formalize instan-
tiation. This realizability semantics will then be exploited in the next sections for test
generation. The implication of our final result will be that the encoding presented here
is a uniform framework for both reasoning about models and metamodels, for writing
model transformations and also for generating test cases.

A metamodel for a modelling language has a definition as a collection of associated
MOF metaclasses. For example, the full UML specification, like all OMG standards, has
been defined in the CMOF. In Example 1 we present a very simple example of metamodel
transformation, which will be used through the paper.

Example 1. Fig. 2 (a) and (c) shows two metamodels M| and M>. The metamodel in-
stances of M; represent models for simple composite structures, those of M, for tables.
We are looking for a transformation of the Component meta-objects ctf into Table meta-
objects t with columns corresponding to the attributes linked to ¢t and to the composite

containing ct.! For example, the metamodel instance I in Fig. 2(d), modelling a Person
according to the Table metamodel, corresponds to I; in Fig. 2(b), modelling a Family
according to the Composite metamodel. Beside the multiplicity constraints shown in the
meta-models, other constraints regard the name and id meta-attributes. Those will be
discussed in Section 3.

cs:Composite of ct:Component
Composite| 1 of 1..+]Comp t name = "Family" name = "Person"
name: String name: String
0..1 6..1 att catt
att catt
Attribute sn:Attribute na:Attribute
name: String name = "last name" name = "first name"
(a) A source metamodel M (b) A source instance [
with cl1: Column
’ | id = "first name" |
t: Table
id = "Person”
cl2: Column
Table |1 with 1..* Column
id: String id: String with | id = "last name
(c) A target metamodel M, (d) A target instance I»

Fig.2. A source and a target metamodel

2.1 Encoding the structure of metamodels

We now describe a simple set-based encoding of the structure of metamodels and metaob-
ject instantiations. Once we have established this encoding, we will turn our considera-
tion to semantics and constraint conformance, using a constructive logic formalism.

Since we are only concerned with creating metaobject test cases for transformations,
we need not deal with representing methods within class types and, for reasons of space,
we consider the subset of the CMOF that permits a UML class-style representation of
metamodel grammars.

Definition 1 (Signature for metamodel). Assume Class, Association, AssociationEnd
and Property are the meta-metaclasses for metaclasses, associations, association ends
and properties in the CMOF. Take any metamodel M that consists of a set of (possibly

! This is inspired by the UML2RDB challenge transformation proposed in [4], for whose details we
refer to op. cit.

associated) metaclasses:
M : Set(Class) x Set(Association) x Set (AssociationEnd) x Set(Property)

Let Mcass denote Set(Class), Massociation denote Set(Association) and so on. Then, the
signature Sig(M) for M is defined as (Sorty,Relys,Opyy), where Sorty is a set of sort
names,” Rely is a set of relations, Opy, is a set of sorted operations and defined to be the
minimal tuple of sets satisfying the following conditions:

— {Tc | C € Mciass} C Sorty, where Tc is a unique sort name corresponding to a
metaclass C € M¢,ss.

— Every data type T used within a Property of any C € Mcjass 0r A € Massociation IS
taken as a sort in the signature: T € Sorty,.

— There is a set of distinguished relations {isLivec : Tc | C € Mciass} C Rely.

— For each A € Mpassociation, Such that A.ownedEnd.Property.type = T and
A.memberEnd.Property.type = T5, A : T X T € Rely,.

— Forevery C € Mcass and at € C.ownedAttribute such that at type=T, at : Tec X T €
ReIM.

Example 2. The signature for the metamodel M, of Fig. 2(a) takes the following form,
for C € {Component, Composite, Attribute}:

Sig(My) = ({Tc, String}, {isLivec:Tc, of : Tcomponent < Tcomposite
att : Teomposite % Thuributes €att = Teomponent X Tartribure; name : Te x String }
OPString >

Remark 1. Observe that both attributes and associations are formalized in the same way.
An attribute of a metaclass is understood as a relationship that holds between an element
of the metaclass sort and elements of the data type sort. Sorts T¢c € Sorty, are intended
to denote the range of metaclasses for a given metamodel M. As we shall see, their se-
mantics is taken to range over an infinite domain of possible instantiating metaobjects.
However, every given metamodel instance contains a finite number of metaobjects. The
predicate isLivec is consequently intended to always have a finite interpretation, denoting
the set of the metaobjects of metaclass C that are operational or are alive in the metamodel
instance. Note that multiplicities other than 1 or * (including important kinds of multi-
plicities such as ranges) are not dealt with through the signature. Instead, these will be
treated in the same way as metamodel constraints, as part of a larger, logical metamodel
specification, defined next. Finally, subclassing can be understood as a subset relation
among the live objects and inheritance can be imposed by suitable axioms. We have not
considered this issue here, to focus on our constructive logical approach.

Before defining our logic, we first formulate a value-based semantics for metamodel
signatures Sig(M), based on the usual notion of Sig(M)-interpretation.

Definition 2 (Values). Let T € Sorty. The set of values of T, denoted by dom(T), is
defined as follows: if T is a data type, then dom(T) is the set of values inhabiting it;
if T is the type of a class C, then dom(T) = 0id(C), where 0id(C) is the set of object
identifiers of class C.

2 To avoid confusion with other uses of the concept of a Type in the MOF, we use the term “sort”
within our formalisation to denote classifying sets.

Note that here we assume that data type values are represented by ground terms of Sig(M)
and that oids are constants of Sig(M). Values are the same in all the possible metamodel
instances. Specific metamodel instances differ according to their representation of spe-
cific interpretations of the predicates isLivec, An and at.

Definition 3 (Metamodel interpretation). Take any metamodel M with signature
Sig(M). A metamodel interpretation is a Sig(M)-interpretation m such that:

1. sorts are interpreted according to Definition 2 and data type relations and operations
are interpreted according to the implemented data types.

2. Each predicate isLivec is interpreted as a finite sub-domain m(isLivec) C dom(T¢);
intuitively, m(isLivec) contains the metaobjects of class C that constitute m.

3. Each association An : Ty x T is interpreted as a relation m(An) C m(isLiver,) X
m(isLiver,).

4. Each attribute at : Tc x T is interpreted as a functional relation m(at) C
m(isLiver.) x dom(T).

We treat the interpretation of sorts and data types in m as predefined, i.e., independently
of the specific metamodel instance. The latter can be reconstructed from the interpretation
of isLivec, An and at. We represent this information with the model-theoretic notion of
diagram:

Definition 4 (Diagram). Given an interpretation m and values vy, ... ,v,, a diagram A
of a relation r is the set of closed atomic formulas r(vy,...,v,) that are true in m.

We will use diagrams as a canonical representation of metamodel instances.

Example 3. The metamodel instance I; of the metamodel M; in Figure 2 (d) is repre-
sented by the diagram:

AM] = { iSLiveCOmpasite(Cs)a iSLiveCOmponent(Ct)a iSLiveAttribute(sn): iSLiveAtrribme(na)a
of (ct,cs), att(cs,sn), catt(ct,na), name(cs, "Family"), name(ct,"Person™),
name(sn,"last_name"), name(na,"first_name")}

2.2 Encoding the constraints of metamodels

Signatures formalize the metamodel structure and diagrams formalize the possible in-
stantiations of this structure. However, a metamodel is not just a structure: it also in-
cludes constraints. A diagram is correct if it represents an instantiation that satisfies the
constraints. How do we formalize a metamodel with constraints and the notion of correct
diagram? That is, when can we say that all the information contained in the relational as-
sertions of a diagram yields an actual metamodel instantiation, in the sense of conforming
to the structure of the metamodel and its associated constraints?

We do this via a form of constructive logic. Essentially, we define a realizability
relationship [18] between a logical formula F and what we call an information term <t
(see [6] for more details), denoted T : F, yielding a notion of “information content” 1C(T :
F), both to be defined next. Roughly, we will use T: F to construct instance diagrams and
IC(T: F) to validate them. The realizability relationship forms a kind of type inhabitation
relationship that is sufficiently powerful to include constraint satisfaction, essential for
developing formal notions of provably correct instantiating model.

Definition 5 (Information terms and content). Given a metamodel signature Sig(M),
the set of information terms 7, (well-formed) formulas F over Sig(M) and information
content IC(T : F) are defined as follows:

term1 formula F IC(T: F)

t true(K) {K}

<‘C],‘Cz> FIANF, IC(‘C] :F]) (@] IC(TQZFz)
Ji(Ti) FVE 1c(t: F) (k=1.2)

=T)|V e{y: TGO FF{{y:T|Gy)} ={vi,-..,va} } U
iy 1C(Ti Flvi/])
e(v,7) x:T.F 1c(t: Fv/x])

where t is a constant, K any first-order formula, v € dom(T), {vi,...,vn} is a finite sub-
set of dom(T) and G is a generator, namely a special formula true over a finite domain.

Remark 2. Although the intuitive meaning of each of the formulas should be clear, some
explanations are required for 7rue(-) and for bounded universal quantification. The pred-
icate rrue(K) designs a metalogical assertion that the formula K is known to be true and
that K, used as an assertion about a metamodel, does not require any specific information
to be used in the construction of a metamodel instance (the idea was originally intro-
duced in [12]). The information content is K: i.e., K is the minimal assumption needed
to prove K. Regarding universal quantification, the associated information term defines
both the domain {y: T | G(y)} = {v1,...,v,} and a map from this domain to information
terms for F. In a metamodel signature, the formulas isLivec(x) is an example of genera-
tor. This corresponds to the assumption that a metamodel instance contains finitely many
metaobjects.

If we consider universally bounded quantification Vx € {y: T | G(y)}.F as semanti-
cally equivalent to Vx : T.G(x) — F and true(K) as equivalent to K, our formulas can be
viewed as a subset of the ordinary (many sorted) first-order formulas and m |= F can be
defined as usual. Furthermore, we may use any first-order formula as an argument of ¢ rue.
We will use formulas F to formalize constraints over metamodels and information terms
to guarantee that F contains all the information needed to construct valid diagrams, i.e. if
it is the diagram of a metamodel interpretation m that satisfies the constraints — we shall
formalize this in Def. 7. We will represent a metamodel M by a Sig(M)-formula Spec(M),
where the latter encodes the constraints of the metamodel M so that if IC(T : Spec(M)) is
(model-theoretically) consistent then the corresponding diagram is valid.

Consequently, with the aim of testing a transformation 7'r, with input metamodel M
and output metamodel My, if we can generate a set of T; : Spec(M) with valid informa-
tion content, we can generate the corresponding diagrams, which may then be fed into
the transformation as test cases. Furthermore, if we specify the precondition of 7r as
true(Prer,) and its postcondition as true(Postry), then we can use Spec(M)), Spec(M),
true(Prer,) and true(Postr,) to check the correctness of Tr, i.e., to supply a test oracle.

We now define Spec(M) and introduce some notation: for an atom B, B(s") is an
abbreviation of Vy : T.B(y) <> y € s and B(!x) an abbreviation of Vy : T.B(y) <>y = x.

Definition 6 (Metamodel specification). Given a metamodel signature Sig(M), we rep-
resent each class C of M by a formula of the following form, where square brackets

indicate optional sub-formulae:

Spec(C) = Vxe{y:Tc|isLivec(y)}.
Jzy @ Set(Ic,) .true(A (x,z}) [AKi(x,z1)]) A -+ A
Az : Set(1c,,) - true(Apm(x,2) [A Km(x,2m)]) A
v Ty, true(aty (x,1vi)) A -+ A
vy Ty, -true(aty(x,1vy) [A true(Ke)])

1. A Te x T, (0 <i < m) are the relations of Rely corresponding to the associations;

2. K; (0 <i<m)are “multiplicity constraints” on the associations A;;

3. atj: Te X Ty, (0 < j < n) are the relations of Rely corresponding to the attributes
of C;

4. Kc is a formula that we call the “class constraint” of C.

A metamodel M is specified by the Sig(M)-formula
Spec(M) = Spec(Cy) A --- A Spec(Cy) [A true(Kg)] (1)

where Ci, ..., C) are the metaclasses of M and K¢ is an optional formula that we call
the “global constraint” of M.

We switch to a “light notation”, where we use generators isLivec as sorts.

Example 4. The specification of the metamodel M; described in Example 2 is
Spec(M1) = Fem N Fems A Fag N true(K), where:

Fom = Vx: iSLi"eComponent(x) .
Jsc : Set(Composite) .true(of (x,sc*) Asize(sc) = 1) A
dsa : Set(Attribute) .true(catt(x,sa*) AVa € sa.catt(!x,a)) A
s : String .true(name(x, s) A cattNames(x, s))
Fems = Vax: iSLiveCampasim(x) .
dsa : Set (Attribute) .true(att(x,sa*) A Va € sa.att(!x,a)) A\
ds: String .true(name(x,'s) AattNames(x, s))

Fay = Vx:isLiveayripure(x).3s : String . true(name(x,s))

We omit the specification of K for conciseness; informally, it states that different at-
tributes linked to the same component/composite must have different names. In Fcy,
the constraint size(sc) = 1 encodes the multiplicity 1 of the target association end of of,
while Va € sa. catt(!x,a) refers to the multiplicities 0..1 of the source association ends of
catt. The encoding of multiplicity constraints is standard, i.e., it can be fully automated.
The other constraints are encoded in Prolog, for reasons that will be explained at the end
of the section. For example, the constraint cartNames(x, s) is defined by the clause:

false « isLiveayripue(@) N catt(x,a) A name(x,s)

i.e., it is false that there is an attribute a linked to component x whose name is s; the
constraint artNames(x, s) is similar.

Let T : Spec(M) be an information term for a specification of a metamodel M. We
distinguish between a “diagram part” 1Cp and a “constraint part” 1Cc of the informa-
tion content. The latter contains the multiplicity constraints, the class constraints and
the global constraint, while the former contains the domain formulas isLivec(o;) for
{y : Te|isLivec(y)} = {o1,... 04}, the association formulas An(o,s*) and the attribute
Sformulas at(o,!v). The diagram part allows us to define a bijective map & from the infor-
mation terms for Spec(M) into the instance diagrams for M, by means of the following
conditions:

1. Domain formulas: isLivec(o;) € 8(t) iff isLivec(0;) € 1ICp(T : Spec(M));
2. Association formulas: An(0,0") € 8(7) iff An(o,s*) € 1Cp(T: Spec(M)) and o’ € s,
3. Attribute formulas: at(0,d) € 8(t) iff at(o,!d) € ICp(T: Spec(M)).

Example 5. Consider the specification Spec(M1) of Example 4 and the information term
1= <T11 311271]3 s t>, Where:

11, e = (Ct and e({cs}, (t,e({na}, <t,e("Person",t))))))
T, Foms = (es — e({sn}, (t,e("Family",t))))
T, Fan = (sn +— e("last_name",t), na — e("first_name",t))

The diagram and constraint part of 1C(t; : Spec(M;)) are:

ICp = { iSLiVeComponent(Ct)a iSLiveCampasite(cs)a isLiveayripure(sn), isLiveayripure(na),
of (ct,{cs}*), catt(ct,{na}*), art(cs,{sn}*), name(ct,!"Person"),
name(cs,|"Family"), name(sn,!"last_name"), name(na,!"first_name")}

ICc = { size({cs}) =1, Ya € {na}.catt(\ct,a), Ya € {sn}.att(!cs,a),
cattNames(ct,"Person"), attNames(cs,"Family")}

The diagram &(t1) coincides with Ay, of Example 3. Clearly, we could start from A,
reconstruct /Cp and, from the latter, reconstruct T;. We can consider the diagram part as
the “encoding” of the pure UML part of an UML model, as depicted in part (b) of Fig. 2.

IC¢ does not play any role in the definition of the map 8, but encodes the constraints.
In the above example, the constraint part is satisfied: size({cs}) = 1 is true and one can
easily see that the other formulas in /Cc are also true. We will say that T satisfies the
constraints.

Definition 7 (Constraint satisfaction). Ler T : Spec(M) be an information term for a
specification of a metamodel M: we say that T (and 8(t)) satisfies the constraints iff A =
8(7) is the diagram of a metamodel instance my of M such that mp = 1Cc (T : Spec(M)).

Let my be as in the above definition. We can prove that mp |=1C(t : Spec(M)) hence
the valid metamodel instances of M are models (in the sense of logic) of Spec(M). Fi-
nally, the following sufficient condition for satisfying the constraints can be proven:

Theorem 1. Let T : Spec(M) be an information term for a specification of a metamodel
M, Ax any set of axioms that are true over all the metamodel-instances and K = \1Cc(T:
Spec(M)). Then:

a) if AxUICp(t: Spec(M)) F K, then t (and 8(t)) satisfies the constraints;
b) if AxUICp(t:Spec(M)) F —K, then T (and 8(t)) does not satisfy the constraints.

In Ax we have the axioms for the data types (integers, strings, sets, ...) and the gen-
eral assumptions on the oids and on the metamodel instances. Assume we have a possible
term T : Spec(M). To establish that the diagram d(t) is a valid metamodel instance we
could apply Theorem 1 and we could attempt to derive a proof using a suitable inference
system for Ax; alas, this is hardly predictable if Ax and constraints are full first-order for-
mulae. We need a tractable constraint language. The constraints concerning multiplicities
are recognized and checked in the generation phase. To express and check the other con-
straints, we rely on Horn clauses. We distinguish between problem domain and absurdity
clauses. The former are definite clauses implementing data types (strings, sets, bags, ...)
and encoding the general properties of the MOF. The latter have the form false < Body,
with intended meaning —3x. Body. By the properties of definite programs, one can prove:

a) if false finitely fails, then for every absurdity constraint false «— Body, —3x.Body
is satisfied;
b) if false succeeds, then —3x. Body is falsified for some constraint.

For example, the constraint part of the information term of Example 5 contains two ab-
surdity constraints, namely cartNames(ct,"Person") and attNames(cs,"Family") and
false finitely fails, since there is no attribute with name "Person" or "Family". Had
the diagram contained such an attribute, false would had succeeded.

3 Testing via model generation

In this Section we show how our setup allows us to:

1. generate input test models that meet the precondition for a model transformation;
2. check that, after the input models have been transformed, the transformation post-
condition is met.

In this way, we are able to provide a constructive model transformation testing framework
in accord with the concepts of Fig. 1.

The System. The architecture of our system is outlined in Fig. 3 with two main units
(Test Case Generator and Oracle) cooperating. The module testGen generates a set
of information terms that are translated into test cases for the transformation undergo-
ing testing (7r U.T.) by the module toMOF. The inputs of testGen are the specification
Spec(M)) of the source metamodel M, the transformation specifications precondition,
encoded by a constraint Prer, and a set GR of generation requests provided by the user
to implement zest criteria. The generated information terms T : Spec(M) Atrue(Prer;)
are translated into test cases Iy = toMOF (7). The transformation Tr U.T. is then run us-
ing such test cases. Note that we are agnostic about how models are represented — as
abstracted in the fromMM module — as well as 7r U.T. is implemented: the framework
could translate from arbitrary metamodelling language and feed test cases into a trans-
formation written in any language. However, the transformation can also be assumed to
be written in the same constructive language as the metamodel specification and infor-
mation terms (together with the modules themselves) because the logic may rely on a

10

GR (test criteria, My, M,

user choices)
777777777777777777777777777777

: Oracle
i Test Case
i Generator Spec(M>) OK / Error
| Spec(My)
EaE i —
Prer, Post;, — |
Tk TI’(
i

Fig. 3. Testing transformations

A-calculus rather than realizability. The reader is referred to [14] for details of such an
encoding.

The translated metamodel instances are checked using the module fromMOF, which
attempts to reconstruct the information terms corresponding to the transformation output
model Tr(I;) and the check module, which tries to validate Postr,. The two modules
work together as a test oracle: if £romMOF fails, then the results do not respect the types or
the invariants prescribed by Spec(M,), while if check fails, then only Postr, is violated.

The testGen module supports exhaustive (EGen) and random generation (RGen). In
RGen, objects, attribute values and links are generated randomly, albeit consistently with
the GR and the constraints. EGen, instead, generates all consistent information terms,
which are minimal w.r.t. the constraints and a given population As emphasized in [7], the
generation of “small test-cases” is crucial to make the understanding of each test case
easier and to allow an efficient diagnosis in presence of errors. Finally, data-centric test
criteria such as those considered in op. cit. can be expressed as generation requests.

Before delving into the specifics of the generation algorithm behind testGen, we
illustrate how the architecture would operate over the source metamodel M and the
target metamodel M> shown in Fig. 2.

Example 6. The specification Spec(M) is the one of Example 4, while Spec(M,) =
Frap N\ Feor N\ Krgp, where:

Frap = Vt:isLiverup,(t).
dcl : Set(Column) .true(with(t,cl*)) A As : String .true(id(t,!s) A id(!t,s))
Feor = Vel tisLivecojumn(cl) . 3s : String .true(id(cl,!s))

and the constraint K7, states that the 1d’s occurring in a table are pairwise distinct. Let
Tr be a transformation mapping M -instances into M»-instances informally defined as
follows:

— Pre-condition. Each Composite object is linked to a unique Attribute via att.
— Post-condition. For every Composite object ¢s and every Component ct of cs there
is a corresponding Table ¢ such that:

11

e .1d is equal to cf.name;

e for every Attribute a linked to ct by catt there is a corresponding Column c/
linked to # by with, so that c/.id is equal to a.name;

e for every Attribute a linked to cs by att there is a Column ¢/ linked to ¢ by
with such that ¢/.1d is equal to a.name.

For example, the metamodel instance I; of M is transformed into I, = Tr(1;) of M, (see
Fig. 2). The formal specification of Tr contains formulas such as:

toTable(ct,t) — isLivecomponent(ct) N isLiverqpe(t) A 3s: String .name(ct,s) Nid(t,s)
false — isLivecomponent (ct) N (3t 2 isLiverqp,(t) .toTable(ct,t))

For the experiments discussed in Table 1, we have implemented 77 in Prolog. To
generate the test cases, we supplied (beside Spec(M) and the precondition) the following
generation requests, whose precise syntax we omit for the sake of space:

— PR (Population Requests): generate at most 2 composites, exactly 2 components and
at most 8 attributes.

— MR (Multiplicity Requests): a snapshot must contain at most 2 components linked to
a composite (via of) and at most 2 attributes linked to a component (via catt). No
MR is needed for the association ends with multiplicity 1 or 0. . 1.

— AR (Attribute Requests). These are: (AR,) all the objects have distinct name; (ARp)
there are at least two Attribute with the same name.

Experiment Module Input Result Time (sec.)

la Test Case Generator|Spec(My), Prerr, PR, MR, AR,| 18 test cases I 0.7
Oracle 18 translations Tr(I;) 9 failed 0.31

1b Test Case Generator|Spec(My), Prer,, PR, MR, ARy|118 test cases I 5.9
Oracle 118 translations Tr(I;) 76 failed 1.9

2 testGen Spec(M*), GR*, Pre* 144 T 4.4

Table 1. Experimental results

We use those requests to deal with coverage criteria such as those introduced in [7],
adapting previous work on test adequacy criteria for UML. For example, “Association-
end-Multiplicities” (a test case for each representative multiplicity pair) can be imple-
mented by MR’s, whereas “Class Attribute” (a test case for each representative attribute
value) by AR’s. In our experiment we have used partition analysis of the input domain,
for example into (1a) the snapshots where all the objects have distinct names and (1b)
those containing at least two distinct attributes with the same name. For (1a) and (1b) we
have relied on EGen, with the above PR to avoid a combinatory explosion of the number
of minimal snapshots.

The experiments have been conducted with an Intel 2.2 GHz processor T7500 oper-
ating with 2GB of RAM and the results are summarized in Table 1. EGen for (1a) has
been performed according to the generation requests PR, MR and AR,. We have obtained
18 test cases. Running 77 and the oracle, 9 of the 18 test cases failed. EGen for (1b) used
PR, MR and AR, and yielded 118 test cases. Again we ran Tr and the oracle; 76 test cases
failed. As illustrated by the sample test cases in Fig. 4, two kinds of errors were detected:

12

ct2: Component

name = "Str3"
of

- - . . 11 : Col
a2 : Attribute ait | cs1: Composite t1: Table with | © olumn

o id = "aa"

name = "aa" of name = "Strl" id = "Str2 with

al : Attribute | .4y | ctl: Component t2: Table with | €12 : Column

name = "aa" name = "Str2" id="Str3" id="aa"

Fig. 4. Failed test cases

1. The column c12 corresponding to a2 occurs in both the tables t1 and t2 correspond-
ing to ctl and ct2 resp., i.e., the multiplicity 1 of with.Table is violated.
2. The table t1 corresponding to ct1 contains two columns with id = "aa".

Error 1 was reported in all 9 failed test cases of (1a) and can be traced back to a wrong
implementation of 7'r. Error 2 can be discovered only by (1b) and requires a stronger
precondition. Without exhaustive generation for the (1a, 1b)-partition, the above errors
could not have been revealed. We believe that the combination of exhaustive generation
of the minimal information terms with domain partition testing, using the latter to avoid
combinatory explosion, could be profitable line of research.

In the testGen module, the information terms are generated in two phases. In the
first one, some existential parameters are left generic (this is possible thanks to the con-
structive structuring of the information). In the second phase, the generic parameters
are instantiated according to a strategy, e.g. RGen/EGen. As a rule of thumb, one leaves
generic those existential parameters that give rise to a combinatory explosion of the num-
ber of solutions. In particular, in the first phase of experiments (1a, 1b) we used PR and
MR leaving name open; we obtained 18 generic solutions in 0.01 sec. In the second phase
of (1b), the names were instantiated according to AR}, (at least two attributes with name
"aa" and the other ones distinct): we obtained 118 test cases. As another larger example,
we have formalized the UML metamodel considered in [16] (denoted with star in the
table) and we have generated 144 generic terms in 4.4 sec.

4 Related work and conclusions

The relevance of snapshot generation (SG) for validation and testing in OO software
development is widely acknowledged and has yielded several animation and validation
tools supporting different languages. USE [8] has been the first system supporting auto-
matic SG; differently from us, SG is achieved procedurally, requiring the user to write
Pascal-like procedures in a dedicated language. Not coincidentally, USE performances
are very sensitive to the order of objects and attribute assignments [2]. Alloy [9] is the
leading system [2] for generation of instances of invariants, animation of the execution
of operations and checking of user-specified properties. Alloy compiles a formula in
first-order relational logic into quantifier-free booleans and feeds to a SAT solver. Al-
loy’s original design was quite different from UML, but recent work [1] has brought the
two together. Baudry et al. have developed a tool that maps metamodel descriptions in

13

the Ecore framework into Alloy, delegating to the latter the generation of model snap-
shots [15]. Their approach is focused on generation of models solely from metamodel
encoding. Our approach could be used to enhance their result, through our use of realiz-
ability to tighten the relationship among (meta)models and their transformations. On the
other hand, they have extensively investigated the issue of the quality and adequacy of
test models, both in term of generation strategies and of mutation analysis [15]. We have
already adopted a version of their domain partition strategy to guide test generation and
plan to refine it towards the filtering of isomorphic and thus useless test models.

Another close relative is FORMULA [10], a tool supporting a general framework
for model-based development. Similarly to us, it is based on logic programming, more
specifically model generation, employing abduction over non-recursive Horn logic with
stratified negation. Model transformations are also encoded logically. Since abduction
can be computationally expensive, we plan to compare it with our realizability-based SG,
as the FORMULA setup may give us a hook to more general domain-specific modeling
languages.

Our particular approach to snapshot generation builds on work by three of the present
authors [6, 13] for object-oriented test case generation, but is now extended and combined
with a first-order variant of the constructive encoding of the MOF and model trans-
formations by the other author [14]. By combining the two approaches, we obtain the
first universal encoding of its kind. Further, our logic supports the “proofs as programs”
paradigm, where a constructive proof @ of TR - F| — F, represents a program P map-
ping the realizers of F| into realizers of F>, TR being a set of transformation formulae.
Hence validation naturally leads to formal certification via proof assistants. This is indeed
the object of future work.

A number of authors have attempted to provide a formal understanding of metamod-
elling and model transformations. We refer to [14] for a review. In particular, rule-based
model transformations have a natural formalization in graph rewriting systems [11]: for
example, Ehrig et al. have equipped graph grammars with a complex notion of instance
generation, essentially adding a means of generation directly into graph rewriting [5]. As
with our work, their formalism permits a uniform semantics of model transformations,
specification and test generation, although with a fairly heavy mathematical overhead.
However, their approach is by definition applicable within a rule-based paradigm: in con-
trast, because our tests are contractual and based in the very generic space of constructive
logic, we need not restrict ourselves to rule-based transformations.

While full verification of model transformations can be as difficult to achieve as in
ordinary programming, the power of model transformations demands some formal guar-
antee that any transformation algorithm actually produces the tests that we expect: in
particular, that tests cases are of appropriate metamodel types and satisfy generation
constraints/requests. We have developed a constructive encoding of the MOF that facili-
tates this via a uniform, single-language treatment of models, metamodels, instantiation,
transformation specification, test case generation constraints and test cases generation.
To the best of our knowledge, a similar approach has not been explored before. Our
implementation relies on a fairly naive encoding of the MOF in logic and needs future
work to be readily integrated into other tool sets: in particular, we need to investigate
how standard visual representations of metamodels and transformations might comple-
ment the approach, together with an automatic translations from OCL into our logic for

14

constraint representation. There are further optimisations that can be done to improve the
constraint solver: for example, isomorphic solutions are reduced but, currently, not elimi-
nated; divide and conquer strategies such as modularization of tests could be employed to
overcome the potential combinatory explosion for large metamodels. Our approach can
currently be considered as one way of integrating formal metamodelling perspectives
with snapshot generation for testing. While formal metamodelling opens up the possi-
bility of full transformation verification, from a practical perspective, testing is likely to
remain an integral component of transformation development for the long term. How-
ever, by following an approach such as ours, formal metamodelling can still be exploited
to generate test data in a way that is guaranteed to preserve consistency with required
constraints. For this reason, we see this work as opening up a very promising line of
research for the formal metamodelling community.

References

1. K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. On challenges of model transformation
from UML to Alloy. Software and System Modeling, 9(1):69-86, 2010.

2. E. G. Aydal, M. Utting, and J. Woodcock. A comparison of state-based modelling tools for
model validation. In R. F. Paige and B. Meyer, editors, TOOLS (46), volume 11 of Lecture
Notes in Business Information Processing, pages 278-296. Springer, 2008.

3. B. Baudry, T. Dinh-Trong, J.-M. Mottu, D. Simmonds, R. France, S. Ghosh, F. Fleurey, and
Y. L. Traon. Model transformation testing challenges. In ECMDA workshop on Integration of
Model Driven Development and Model Driven Testing, 2006.

4. J. Bézivin, B. Rumpe, A. Schiirr, and L. Tratt. Model transformations in practice work-
shop. In J.-M. Bruel, editor, MoDELS Satellite Events, volume 3844 of LNCS, pages 120-127.
Springer, 2005.

5. K. Ehrig, J. M. Kiister, and G. Taentzer. Generating instance models from meta models.
Software and System Modeling, 8(4):479-500, 2009.

6. M. Ferrari, C. Fiorentini, A. Momigliano, and M. Ornaghi. Snapshot generation in a construc-
tive object-oriented modeling language. In A. King, editor, LOPSTR, volume 4915 of LNCS,
pages 169—184. Springer, 2007.

7. F.Fleury, J. Steel, and B. Baudry. Validation in model-driven engineering: Testing model trans-
formations. In MoDeVa’04 (Model Design and Validation Workshop associated to ISSRE’04),
Rennes, France, November 2004.

8. M. Gogolla, J. Bohling, and M. Richters. Validating UML and OCL models in USE by auto-
matic snapshot generation. Software and System Modeling, 4(4):386-398, 2005.

9. D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, 2006.

10. E. Jackson and J. Sztipanovits. Formalizing the structural semantics of domain-specific mod-
eling languages. Software and Systems Modeling, 2009.

11. A.Konigs and A. Schiirr. Multi-domain integration with mof and extended triple graph gram-
mars. In J. Bezivin and R. Heckel, editors, Language Engineering for Model-Driven Software
Development, number 04101 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2005.

12. P. Miglioli, U. Moscato, M. Ornaghi, and G. Usberti. A constructivism based on classical
truth. Notre Dame Journal of Formal Logic, 30(1):67-90, 1989.

13. M. Ornaghi, M. Benini, M. Ferrari, C. Fiorentini, and A. Momigliano. A constructive object
oriented modeling language for information systems. ENTCS, 153(1):67-90, 2006.

14. 1. Poernomo. Proofs-as-model-transformations. In A. Vallecillo, J. Gray, and A. Pierantonio,
editors, ICMT 2008, Proceedings, volume 5063 of LNCS, pages 214-228. Springer, 2008.

15. S. Sen, B. Baudry, and J.-M. Mottu. On combining multi-formalism knowledge to select
models for model transformation testing. In ICST, pages 328-337. IEEE Computer Society,
2008.

16. S. Sen, B. Baudry, and J.-M. Mottu. Automatic model generation strategies for model transfor-
mation testing. In R. F. Paige, editor, ICMT, volume 5563 of LNCS, pages 148—164. Springer,
2009

17. Y. L. Traon, B. Baudry, and J.-M. Jezequel. Design by contract to improve software vigilance.
IEEE Trans. Softw. Eng., 32(8):571-586, 2006.

18. A. S. Troelstra. Realizability. In S. R. Buss, editor, Handbook of Proof Theory, chapter IV,
pages 407-473. Elsevier, 1998.

15

