Regular Search Spaces and Constructive
Negation

ALBERTO MOMIGLIANO, Department of Philosophy, Carnegie Mellon
University, 15213 Pittsburgh PA, USA.
E-mail: am4e@cmu.edu

MARIO ORNAGHI, Dipartimento di Scienze dell’Informazione, Universita’
degli studi di Milano, Via Comelico 39/41, Milano, Italy.
E-mail: ornaghi@imiucca.csi.unimi.it

Abstract

The axm of this paper is to show the fruitfulness and fecundity of the authors’ proof-theoretic analysis of logic pro-
gramming (both for definite and normal programs). It is based on a simple logical framework that goes under the
name of regular search spaces. The challenge faced here is to give a treatment in proof-theoretic terms of the issue
of negation, which has been one of the toughest problems that has plagued logic programming from its very begin-
ning. While negation-as-failure (NF) has been overwhelmingly the more widespread answer, its intrinsic limitations
have made it a rather unsatisfactory solution. In the present paper 1t 1s first contended that the notion of regularity
offers a better understanding of the traditional theory of NF, and second a firm yet very simple and natural basis for a
form of constructive negation, in the sense of Chan, Stuckey and Harland. A version of constructive negation 1s pre-
sented, based on the notion of regular splirting, a transformation technique where the failure axiom(s) of a predicate
occurring negatively in a program are split into new clauses according to a covering of the underlying signature.

Keywords: Logic programming, proof-theory, negation-as-failure, constructive negation, search spaces.

1 Introduction

The aim of this paper is to show the fruitfulness and fecundity of the proof-theoretic analysis
of logic programming developed in [33] (both for definite and normal programs). It is based
on a simple logical framework that goes under the name of regular search spaces. Here many
logics can be expressed and, provided they are shown to be regular, i.e. they satisfy some
elementary closure properties, they are then guaranteed to enjoy the very features that make
pure Prolog a feasible and successful implementation of a computational logic, namely the
Horn fragment.

Some of the tools that we are going to use are the concept of axiom application rule (AAR),
which can be seen as an abstraction of an inference step of a logic programming interpreter
(or more generally as the atomic nucleus of rule-based systems) and of most general proof-
tree (mgpt), which is the analogue of a SLD-derivation. Mgpts are in fact based on the notion
of AAR, which easily generalizes to various definitions of clauses and goals. Finally, in the
background, all is connected by the notion of regular search space, which plays the role of a
Prolog-like search space.

The challenge that we face here is to give a treatment in our proof-theoretic terms of the is-
sue of negation, which has been one of the toughest problem that has plagued logic program-
ming from its very beginning. While negation-as-failure (NF) [10] has been overwhelmingly

J. Logic Computat., Vol. 7 No. 3, pp. 367403 1997 (© Oxford University Press

368 Regular Search Spaces and Constructive Negation

the more widespread answer (see Section 6), its intrinsic limitations have made it a rather un-
satisfactory solution. One of the more questionable features is that it is incapable of providing
logically justified answers to open queries, consequently restricting negation to be just a test,
rather than a logical operator.

In the present paper we will first contend that the notion of regularity offers a better under-
standing of the traditional theory of NF and second a firm, yet very simple and natural basis
for a form of constructive negation, in the sense of [8, 49, 18], a trend of studies recently pur-
sued aiming to remedy some of NF's maladies. In particular, we shall be concerned with the
transformational approach initiated in [5), also known as intensional negation [26, 30, 7].

We will introduce an axiom-application rule F which allows one to interpret SLDNF-trees
as search-trees for F-proofs of negative goals. Due to this analysis of NF, the soundness is-
sue related to the safeness condition on the selection function is shown to originate from (an
analogue of) the usual proviso on parameters of the 3-left and V-right rule in the sequent cal-
culus [38]. More importantly, the analysis clarifies the intrinsic incompleteness of NF due, to
a great extent, to the fact that the F rule gives rise to a non-regular search space.

We contend that the incapability of answering negative open queries is due to the non-
regularity of SLDNF-search trees. We will show that regularity can be achieved through a
splitting of the given program, obtaining in this way a regular system, where it is possible to
answer negative open queries. Splitting is a simple transformation technique where the failure
axiom(s) of the predicate definition occurring negatively in the source program are split into
new clauses according to a covering {17, 30] of the underlying signature and then executed in
an opportune inference system. This is similar to the method in [5] and ancestors (see Section
6 for a comparison).

We want to stress at this point that our interest lies mainly in showing the versatility and the
adaptability of our approach—having digested a few simple initial definitions—rather than
keeping up with front-line research on negation in logic programming: in particular we shall
deal only marginally with new developments in the field about constructive negation, com-
pletion, answers sets and completeness of NF (see for example [44, 6] and the recent survey
(3]). Similarly, our review of related work is meant to help the reader to situate and compare
our approach to the aforementioned issues, rather than detailed discussions about its edge over
other proposals.

This paper, therefore, has in part a pedagogical vein. Our long-term intent is to show that
many issues in the theory of logic programming, starting from NF, which are well-known but
not necessarily well-understood, have a very natural, elegant, concise and stimulating proof-
theoretic reading. Besides, the latter can provide the researcher with useful tools that are in-
deed relevant to current research (see, for example, Stirk’s thesis [47] and following papers).
Note that there are several points where we move from our reconstruction of folk material to
the presentation of new ideas and connections.

The paper is organized as follows: in Section 2 we review the proof-theory of logic pro-
gramming, from the abstract point of view formulated in [33] down to a reconstruction of
SLD-resolution. Section 3 formulates the theory of Regular AAR-Systems. Section 4 deals
with the proof-theory of NF and the related soundness and completeness problem. Section
5 proposes regular splitting as a solution to the problem of evaluating open negative queries.
Eventually we give a version of the method in the positive fragment of pure Prolog and in
Section 6 we compare our approach with other treatments of negation in logic programming.
In the Appendix we detail the proof of the Finite Failure Theorem (4.4), stated in Section 4.

Regular Search Spaces and Constructive Negation 369

2 Systems based on axiom-application rules

Our view of an abstract! logic programming system is that of an idealized interpreter endowed
with rules—the inference mechanism—that apply axioms—the program—starting from a goal
and searching for a proof. We formulate this approach in all its generality and we exemplify
it with some systems that are related to SLD(N F)-resolution. We assume some familiarity
with logic programming [27, 2] and basic proof theory [38, 42, 16].

2.1 AAR-systems
An AAR-system is a triple (G, A, R) where:

1. G is a set of admissible goals. In this paper those will be literals, but more general forms
could be used (see [33]). Goals are therefore distinct from Prolog goals, denoted as usual
by the sequence + Lq,...,L,.

2. A is a set of admissible axioms. For example, that could be (the universal closure of)
definite or normal clauses, the completed definitions of the predicates of a program, or
more general kinds of axioms (see [33]).

3. R is a set of axiom application rules. A rule R € R is any relation from goals and axioms
to sequences of goals, including the empty sequence A, i.e. R C (G x A) x G*.

We shall say that G;;...;G, € R(G, Az) for those sequences of goals Gy;...; G, such
that ((G, Az),Gy;...;G,) € R (namely R(G, Az) is a set of sequences of goals). Using
semicolons to separate goals as well as axioms, we will draw this as

Gy;---;Gn; Az
G
When A € R(G, Az), we call Ax a fact and we write

(R).

Az
E(R)-

A program P is a set of axioms from A.

NOTATION 2.1

If A is an atom, neg(A) = —A; otherwise neg(—~A) = A. Capital letters will denote logical
variables, while lower case will be reserved for terms, quantified variables and eigenvariables
[38]. Recall that the latter (often called parameters) are variables whose only possible sub-
stitutions are capture-freeing renaming. V(M) (3(M)) will denote the universal (existential)
closure of M, whose free variables are bound by universal (existential) quantifiers. For the
sake of mental hygiene, we will tacitly confuse terms with tuples of terms: for example Q.y
will either denote a (possibly empty) list of quantified variables, or a single occurrence binding
the variable y. It will be apparent from the context which is intended.

We now introduce, as examples, the systems we will be more interested in.

1The notion of abstract logic programming language was introduced some years ago by Miller ef al [31] as
one satisfying some constructive provability conditions, interpreted as search instructions; in this respect the two
notions are complementary, since basic in our approach is the accent on regularity as an analysis of the conditions
for completeness in abstract search spaces.

370 Regular Search Spaces and Constructive Negation

o The P-system contains a single rule P: the admissible goals are literals and it applies ax-
ioms of the form V(Vy(Ly A --- A L,) = M), where M, Lq,..., L, are literals and y
may appear in L; but not in M. Note that the presence of universal quantifiers in the body
of clauses is a mild extension of the Horn format in the direction of Harrop formulae [31].
If n = 0, then the axiom is V(M). The rule P is defined as follows. For every substitution
renaming y with eigenvariables:

6Ly;...;0L, e POM V(Vy(Ly A---AL,) =& M)).

When we need to differentiate in the P-system applications of rules to positive and nega-
tive goals, we shall use the obvious notation P, P,
An application of P with positive conclusion is, for example:

-sum(v,v,X); Vz(Vz-sum(z,z,z)— odd(z))
0dd(X)

(P*)

where an eigenvariable v has been introduced for 2.

The P rule can be shown to be admissible in minimal logic: its instances are derivable
in natural deduction, along the following lines, where the vertical dots allude to a closing
branch for the assumption —sum(v, v, X): observe the interplay among the different type
of variables:

— the eigenvariable v has uniformly substituted z

— X is a logical variable

- z is universally quantified.

=sum(v,v, X) v_1 Vz(Vzsum(z, z,z) = odd(z)) V_E
Vz.msum(z,z,X) Vz-sum(z,z,X) > odd(X) —E
odd(X)

e The F-system. We allow rules in which some proper (i.e. non-logical) axiom is implicitly
used. In Clark’s equality theory {10] we can derive the following failure rule F to apply
failure axioms of the form:

Faz(p): Vz(p(z) =+ y((z=t1 AL))V---V(z =ty ALy,)),

related, as we will see, to the only-if part of the completion axiom for a predicate definition

p(...) [27)2
neg(ol Lil); .- .;neg(akL,-,,) € F(_‘p(a)7 Fal:(p)))

where a is a term which unifies only with ¢, , ..., ¢;, with idempotent mgus oy, ...0%.
Moreover, if o, L,, contains, modulo renaming, some of the existentially quantified y,
those variables must be new (w.r.t. a) eigenvariables.

21t is possible to present an alternative multiple goals characterization of SLDNF-resolution [33]. This AAR-
system, based on the standard notion of completion, can be enriched by other rules, for instance connected to model
climination {48], that cannot be formulated in the other (weaker) system.

Regular Search Spaces and Constructive Negation 371

Examples of applications of F are, given the standard program for the member predicate
and its failure axiom Fax(member):

member(X, X.XS).
member(X,Y.YS) : — member(X,YS).
Vz,zs(member(z,z8) — Jy,ys,z({z=yAzs=yys)Vv

(z = 2 A zs = y.ys A member(z,ys)))

—member(1,W) Faz(member)
-member(1,2.W)

Faxz(member)

-~member(X,nil) (F)

(F)

In the first case unification fails, hence A € F(—member(X,nil), Faz(member)). In
the second case the mgu [z/1,y/2,ys/W] yields:

—-member(1, W) € F(-member(1,2.W), Faz(member)),

where no eigenvariable occurs in ~member(1, W), since z, y and ys have been replaced
by the mgu. See Example 3.22 for a different situation.

e The PF-system contains, guess what, the rules P and F.

The set of proof-trees 7(G, A, R) of an AAR-system (G, A, R) is inductively defined be-
low, with IT :: G as our linear notation for a proof-tree I1 with root G:

DEFINITION 2.2
Every G € G is a proof-tree. IfII; :: Gy,... ,II, :: G, are proof-trees and G;...;G, €
R(G, Az), then the following is also a proof-tree:

Hl Hn
GIG) Azx
y n, R
i AL ()

We say that a goal is an assumption of a proof-tree if it is a minor premiss in some leaf. The
axioms of a proof-tree are those appearing as major premisses. The root of a proof-tree is
called its consequence.

EXAMPLE 2.3
To illustrate the latter notion, we give a F-proof-tree with consequence —member(1, [2, 3]),
assumption ~member(1, nil) and two occurrences of the axiom Faz(member).

—member(1,nil) Fa:c(member),p)
—member(1,[3]) Faz{member)
—member(1,[2, 3])

(F)

DEFINITION 2.4

A proof-tree is a proof of G iff G is its consequence and it has no assumption. Otherwise it
is a called a partial proof-tree. If the axioms of a proof-tree belong to a program P C A, we
say that it is a proof-tree with axioms from P. The height of a proof-tree is the height of its
longest branch.

372 Regular Search Spaces and Constructive Negation
2.2 P-system and SLD-resolution

To a definite clause C we associate an axiom Az(C) and to a program P the set Az(P) of the
axioms which correspond to its clauses, in the obvious way. For example, let us consider the
program SU M for computing the sum, containing the following clauses 31, s2:

81 : sum(X,0,X).
89 : sum(X,s(Y),s(2)) : —sum(X,Y, Z).

The associated axioms Ax(SUM) are:

Az(s1): Vz(sum(z,0,z))
Az(s2): Vz,y,z(sum(z,y, z) = sum(z, s(y), s(z)))-

SLD-derivations corresponds to the inferences in the P-system, with the following restric-
tions: no universal quantifier occurs in the body of a clause and no negative literal is involved.
The set of proof-trees of the P-system is closed under substitution and the application of a
substitution to a proof-tree I1 is denoted by 611

According to Theorem 2.6 we associate continuations of proof-trees to SLD-steps.

DEFINITION 2.5 (Continuation)
Let Az(C) = V(A1 A ... A A, — B) be an axiom corresponding to a clause C and

CH.
I

be a proof-tree with an assumption H s.t. §B = 6 H, for some substitution 8. The continuation
of Il selecting H and applying Az(C) w.r.t. § is the proof-tree:

0Ay;---;604, Az(C)
... 6H...
o1l

THEOREM 2.6 (Soundness and completeness of the P-system)
Let P be a definite program and A an atom:

(a) If there is a SLD-refutation for PU{+ A} with answer substitution §, then there is a proof
IT :: 5A inthe P-system, using only axioms from Az(P).

(b) If there is a proof II :: @A in the P-system with axioms from Az(P), then there is a
SLD-refutation of P U {+ A} and the answer substitution ¢ is such that § = ¢4, for a
suitable o.

PROOF. Point (b) follows from the validity of the P-system w.r.t. classical first order logic
([27]}, Theorem 8.6).
Point (a) can be proved as follows. Let Go,Gy,...,Gn (With clauses Cy,...,C,, and

substitutions® 8y, .. .,0,,,) be a refutation, with Gg = « A. For0 < i < m, let §, be the
compositionof the 6,,...,8;and «+ 4,,,..., A, be the atoms in the goal G;; starting with
1 = 0, we associate to Gy, . . ., G, a proof-tree I, :: §; A with assumptions 4,,,..., Aih_, , as
follows:

3Note that the proof does not rely on 8y, . . . , 6, being mgus.

Regular Search Spaces and Constructive Negation 373

Step 0. Associate A to Gp.

Step i+1. LetI1 :: §,A be the proof-tree associated to Gg, ..., G, at step i and let G4,
be obtained applying C, to the selected atom A,,,, with mgu 6, ; build the continuation of
I1; :: 8; A selecting A,,, and applying Az(Ciy1) w.rt. 6,4,.

The last goal G,,, is empty, hence the last proof-tree I1,, :: §,, A has no assumptions, i.e. it
is a proof, and &, is the answer substitution. |

3 Regular AAR-systems

Now we approach the analysis of AAR-systems in an abstract setting, from the point of view
of proof-search. This is quintessential to understand the intrinsic properties of logic program-
ming and to evaluate any departure from SLD-resolution as its kernel. In particular, this sec-
tion is a fundamental preliminary to our proof-theoretic treatment of NV F" inasmuch as it intro-
duces the key notion of similarity and regularity together with the central results of the theory.

The search-space of an AAR-system can be organized as a search-tree, where nodes are (par-
tial) proof-trees and arcs (search steps) are continuations (see Definition 2.5 and Theorem 2.6).
A leaf that contains a proof is a success node, and a leaf that contains a partial proof-tree is a
failure node. Finite failure can be characterized as a property of the set of failure nodes.

In general, search in the complete tree is intractable. One of the problems is computing the
right substitutions. It can be dealt with in the following way.

For the P-system, the subsumption ordering [23] on first-order terms can be lifted to proof-
trees [19], and most general proof trees (mgpts) are defined as the maximal elements w.r.t. this
ordering. In ‘good’ systems search can be pursued only in the subspace of the mgpt, through
most general continuations (mgcs); mgcs correspond to SLD-steps in logic programming sys-
tems. The completeness of the search in the subspace of the mgpt depends on a property of
the search space, that we call regularity. The idea of regularity, in its more general setting,
can be outlined as follows.

A subspace is obtained through a suitable equivalence relation among proof-trees, i.e. it
is built by an appropriate quotientation of the (entire) search space. Regularity is a property
of the equivalence classes. It ensures that a regular subspace is success-complete, that is for
every successful path from a goal G to a proof I1 in the complete search space, the subspace
contains at least one path from the equivalence class of G to the one of II.

Thus regularity entails that a search strategy working on representatives of the equivalence
classes will not miss success nodes. Note that success-completeness deals with the complete-
ness of a search strategy w.r.t. a given proof system, not with the one of the proof system w.r.t.
some logic; the latter is to be studied by different (traditional) means.

3.1 Systems closed under substitution

Properties of substitutions, or more properly of instantiations, will turn out to be central in our
treatment. Hence we have to restrict to sets G of goals for which a notion of substitution as an
answer/result of a computation makes sense. Assuming that the application of a substitution
to a goal is well-defined, it is clear how to extend it to trees. We suppose, as well, that axioms
and rules are not affected by substitutions.

Note that, under the more general version that we are developing, II may belong to
T(G, A, R), while 611 does not. To ensure this, we introduce the following:

374 Regular Search Spaces and Constructive Negation

DEFINITION 3.1
We say that an AAR-system (G, A, R) is closed under substitution if, for all 8, G € G entails
8G € Gand,forall R€ R, Az € Aand G € G, R(0G, Az) = OR(G, Ax).

As mentioned, the P-system is closed under substitution. As far as the F(P)-system is
concerned, the situation is more complicated as discussed in subsection 3.5.

One easily sees that, if (G, A, R) is closed under substitution, so is 7(G, 4, R),i.e. Il €
T(G,A,R)entails 811 € T(G, A, R).

This allows us to introduce the following pre-ordering (intuitively to be read as ‘II; is less
general or more instantiated than I1,') and equivalence relation among proof-trees.

DEFINITION 3.2 (Subsumption ordering for proof-trees)
e II; < TII, iff there is a 8 such that I, = 611,.

[} H1 = Hg 1ffI'I1 S H-) andHQ 5H1

Note that the induced equivalence relation on proof-trees corresponds to identity of trees
modulo renaming of variables.
We will be mainly interested in most general proof-trees, defined as follows.

DEFINITION 3.3 (Mgpt)
IT* is a most general proof-tree if it is a maximal element w.r.t. <, thatis, forevery I1, IT* <11
entails I = IT*.

3.2 Search spaces for AAR-systems

Now, let us consider how we could approach the following search problem in a Prolog-like
way, where (finite) sets of axioms are programs and the desired outcome of the computation
are answer substitutions.

Let P be a program and G € G a goal: search for a proof II :: 8G with axioms from
P, for some substitution 6.

If a proof (i.e. a proof-tree without assumptions) Il :: G exists, we say that 8 is an answer
substitution for G w.r.t. P. If, on the other hand, every proof-tree Il :: #G has assumptions,
we say that the goal G fails w.r.t. P.

First of all, we characterize our complete search space through the following notion of one-
step continuation, which generalizes Definition 2.5. '

DEFINITION 3.4

Given G € G, Az € P and R € R, we say that Az can be applied to G by R using 0
iff G1;...;Gn € R(0G, Ax). Given a proof II with at least one assumption G, the above
application gives rise to a one-step continuation, as follows:

Gy ;Gn Az
T

611

Iteration yields many-step continuations. There is a more abstract alternative characteriza-
tion (illustrated in Figure 1):

DEFINITION 3.5
Call IT' an initial subtree of I1 iff IT' is a subtree of IT and they have the same root. Then Iz is
a continuation of I1;, denoted IT; < Iy, iff there is an initial subtree [13 of I1,, s.t. [13 < IT;.

Regular Search Spaces and Constructive Negation 375

FiG. 1. Alternative characterization of continuation

Note that ITy < II; implies IT; < II. In this case we will speak of the trivial continuation.

PROPOSITION 3.6
For the non-trivial case, IT; < Il iff II; is a many-step continuation of IT; .

One immediately sees that G has an answer substitution § w.r.t. a program P iff there is a
continuation Il :: G of the 0-height proof-tree G, such that Il is a proof. Then our search
problem can be restated as follows:

Let T(G, A, R) be the set of proof-trees of a fixed AAR-system. Let T(P) C T(G, A, R)
be the (sub)set of the proof-trees with axioms from P and 7 (P,G) C T (P) be the (sub)set
of the continuations of G. The < relation is easily seen as a pre-ordering on each of those
sets. As hinted above, to obtain a partial ordering we have to take the quotient 7(P)/ =
(i.e. consider proof-trees modulo variable renaming). Finally, take the po-set (that through
standard duplications can be treated as a tree with root G):

(T(P.G)/ = 2).

The leafs are (equivalences classes) of proof-trees which have no continuation; in particular,
a success node is a leaf containing a proof. Otherwise, they are failure nodes. In particular,
(T{P,G)/ =, %) is failed iff every leaf is a failure node (see Section 3.4 for more on that).

The po-set (T (P,G)/ =, <) is the complete search space we mentioned above and it is the
starting point for our analysis of regularity. It contains all the proof-trees (modulo renaming)
and our search problem corresponds to the search of success nodes in such a tree.

For every node [II], where square brackets denote the equivalence class witnessed by II,
(IT'] is a (non-trivial) child of [IT] iff the former is a one-step continuation of the latter.

According to Definition 3.4, a one-step continuation is parametrized by a 4-tuple
(G, Az, R,8). Therefore sequences {(Go, Azg, Ro,60)),...,{(Gn, ATy, Rs,0,)) corre-
spond to non-trivial paths in the tree. Thus, in general, we may have to backtrack on four
dimensions (choices of (Gy, ATk, Rk, 0x)). Moreover, due to the presence of substitutions,
even using a finite set of axioms and rules, a node may have infinitely many children.

Consequently it is desirable to eliminate at least the need to backtrack on substitutions.
This is what is achieved by first-order resolution, thanks to the existence of most general uni-
fiers. Moreover, SLD-resolution enjoys the independence of the selection function {27]. In
our model this is reflected by Proposition 3.14.

It could be expected that the elimination of some dimension of backtracking might cause
success-incompleteness of a search strategy. SLD-resolution is success-complete, but, as we
will see, it becomes success-incomplete when constructive negation? is considered.

4 Constructive in the sensc of being provable in a constructive logic from the completion—this only partially co-
incides with the use of the term in the literature (8, 9, 49).

376 Regular Search Spaces and Constructive Negation

To (re)achieve success-completeness, we have to accept, in a first approximation, the re-
introduction of the dreadful dimension of backtracking on substitutions. As shown in [33],
the possibility of using a success-complete resolution method analogous to SLD-resolution
depends on the property of regularity of the search space (T (P, G)/ =, X). The treatment is
based on the notions of similarity. In the next subsection we recall the main definitions and
results. More details and proofs can be found in [33].

3.3 Regular search spaces

In our model the possibility of using a resolution-like method corresponds to the computation
of most general continuations, among the (possibly infinite) similar continuations, where sim-
ilarity is a suitable equivalence relation among proof-trees.

To informally motivate the notion of similarity, let us consider a path in the search tree
(T(PiGO)/ =, j)

((Go, Azo, R0190)1 RN} <G7H AIﬂ,R'heﬂ))'

Let us call similar two paths determined by the same sequence of axioms and rules, but possi-
bly by different sequences of substitutions. Two proof-trees are similar if they can be obtained
by similar paths.

Now, suppose that every set of similar proof-trees contains a most general proof-tree sub-
suming the others: it is apparent that a Prolog-like (idealized) interpreter will preferably com-
pute onthis one, forget about the others and in particular avoid backtracking on the selection of
substitutions. The problem is to achieve success-completeness, that is no success node should
be lost in this way. To study success-completeness in its generality, it is convenient to formu-
late similarity in a more abstract way, as a structural property of proof-trees:

DEFINITION 3.7

An axiom/rule-occurrencein a proof-tree Il is atriple (p, Az, R} such that pis a path in II from
the root to a node containing an axiom Az applied by a rule R. We say that two proof-trees
I1,, I, are similar, written I1; ~ Ilg, if they have the same (non-empty) set of axiom/rule-
occurrences.

Note that in the previous definition, substitutions do not play any role, as expected: two
proof trees are similar if and only if they can be obtained through similar paths. One easily sees
that ~ is an equivalence relation; the corresponding equivalence classes, denoted by [IT]..., will
be called similarity classes.

We use similarity to curtail the subspace (T (P, G)/ ~, <), where the continuation relation
= has been lifted to similarity classes as follows:

[H1]~ < [H2]~ iff there areIl; € [H1]~,H2 € [H2]~ s.t. I[1; <XTlj. 3.1

It is apparent that any path computed by an interpreter that does not perform backtracking on
substitutions corresponds to a path in this subtree. Thus our quotientation is adequate to study
the behaviour of interpreters of this kind.

An interpreter works on proof-trees, not on equivalence classes. Hence it chooses suitable
representatives of the equivalence classes, and different choices correspond to different search
strategies. Since (3.1) does not require that every representative II of [II,] has a continuation
in [IT]~, a complete search strategy has to choose a ‘good representative’ of [II,]., i.e. a
I € [I1,]~ that has a ‘good representative’ of [[I]... as a continuation.

Regular Search Spaces and Constructive Negation 377

Thus the first condition that our subspace must satisfy is that good representatives exist.
Moreover, since an interpreter will compute only on the latter, we also require that our intuition
of ‘representatives’ of all the proof-trees belonging to their similarity classes is met.

Now we claim that regularity, which is the basis for the existence of most general proof-trees
among similar trees, ensures both the above conditions. Regularity is defined as follows:®

DEFINITION 3.8 (Regular search space)
A set S of proof-trees is a regular search space iff, for every similar IT;, II; € S, there is a
Il € SsuchthatIl; <Tland Il <TII.

Note that regularity is parameterized by the notion of similarity we have chosen to deal with.
The one presented here is the simplest and corresponds to the eliminability of backtracking on
substitutions in Prolog-like languages. Regularity can be made more interesting, for example
introducing versions of similarity that take into account permutability of rules, i.e. for richer
fragments, like hereditary Harrop formulae, where all rules are permutable and therefore it is
possible to restrict to a good representative, namely uniform proofs [31], so that there is no
backtracking on rule application.

Coming back to our analysis of regularity, let us consider any regular search space S. For
example, S could be the set of proof-trees of a program P, 7 (P), or its subset 7 (P, G), in
the P- system, as we will see in the next subsection. The possibility to avoid backtracking on
substitutions is connected to the following propositions (for more details and proofs see {33]).

PROPOSITION 3.9
S is a regular search space iff every similarity class [IT].. contains a proof-tree IT* such that,
for every I’ € [IT].., I < IT*, i.e. IT* is a mgpt representing the former class.

One easily proves that, for two mgpts I3, I3 € {II}.., II} = II3; therefore every similarity
class contains a mgpt, which is unique up to renaming. This mgpt represents all the proof-
trees of the class, in the sense that it subsumes them. Moreover, it represents a good choice
for an interpreter, due to the following proposition.

PROPOSITION 3.10
If TI; is a mgpt, then, for every II; such that IT; ~ IIo, if there is a Il s.t. II; < II, then
I, <II

PROOF. Let II be a continuation of II;. Then 811 is an initial subtree of II. Since II; is a
mgpt similar to II,, there exists a substitution ¢ s.t. II; = ¢II,. Hence (8o)II; is an initial
subtree of I1, i.e. II is a continuation of IT; .

As a corollary we obtain:

PROPOSITION 3.11
Let IT;,II; be mgpts. Then [H1]~ = [H2]~ iff II; < I1,.

PROOF. The right-to-left direction is obvious. Conversely, let [IT;].. < [[I2]~; then there are
IT € [II}]~, II' € [II2)~ s.t. IT < IT'. By Proposition 3.10, IT; < I’ and IT" = 611, (since
the latter is a mgpt). Therefore 811, contains an initial subtree §I1* < IT;, and then IT* is an
initial subtree of IT; similar to I1;. Since IT; is a mgpt, I1* < I, i.e. T} <X II5. [|

5Regularity is connected to generalization or anti-unification, independently introduced by Reynolds and Plotkin
(see [23] and references therein) in the lattice of (first-order) terms. This has been further explored in [19]. Under the
propositions-as-types interpretation, proof-trees are proof A-terms. [37] presents [anti]unification algorithms in the
Calculus of Constructions, although restricted to higher-order patterns. From their unary unification problem (32,
the existence of a mgpt is guaranteed.

378 Regular Search Spaces and Constructive Negation

Thus mgpts can be chosen as good representatives, and we can model our subspace as fol-
lows. Let S be a regular search space and 7 (S, G) the set of the proof-trees I :: 8G € S;
define Gen(S) and Gen(S, G) to be the corresponding sets of mgpts. By Proposition 3.11,
the subspace (T(S,G)/ ~, <) is isomorphic to (Gen(S,G)/ =, <) and we can therefore op-
erate on the latter. To analyse the properties of this subspace, and to understand the underlying
geometry, we introduce the notion of canonical continuation of a proof-tree.

DEFINITION 3.12
A continuation I1* of a proof-tree I1 is a most general continuation (mgc) if, for every other
continuation A similar to IT*, A < I1*. A continuation is canonical iff it is a one-step mgc.

PROPOSITION 3.13
If I is a mgpt, then its mgcs are mgpts. In particular, its canonical continuations are mgpts.

By the above proposition {(Gen(S,G)/ =, <) can be built using only canonical continua-
tions, thus avoiding even the problem to choose substitutions. Moreover, we can prove:

PROPOSITION 3.14
Let IT be a mgpt of S and H be an assumption of I1. If there is a proof A that is a mge of I,
then there is a canonical continuation IT’ of II selecting H such that A is a mgc of IT'.

PROOF. Suppose the contrary, that there is a proof-tree A that is a mgc of II, but there are
no canonical continuation IT' of IT selecting H such that A is a mgc of II’. But there is an
initial subtree A of A that is a one-step continuation of IT selecting H. Hence A is similar to
the canonical continuation IT* of IT selecting H. By Proposition 3.13, IT* is a mgpt and, by
Proposition 3.10, it continues in A, absurdum.

Proposition 3.14 shows that, by using canonical (i.e. most general) continuations, during
the search the selection of the assumption H may be completely non-deterministic. Therefore,
we can further reduce the search space by using selection functions, which associate to every
proof-tree one of its assumptions.

DEFINITION 3.15

A selection function is a mapping F' : T(S)/ = — G. An F-search tree is a subtree of
(Gen(S,G)/ =, =) such that, for every node [I1], its children are the canonical continuations
selecting the assumption F'([I1]). Moreover, < g will denote the subset of the continuation
relation such that the selected assumption in the continuation step is chosen by F'.

It is clear that <X is still a partial order and {(T(S,G)/ ~, X} is a subtree of (T(S,G)/
~, %)

COROLLARY 3.16
For every selection function F, (Gen(S,G)/ =, <#) is success-complete.®

This is a second reason, beyond eliminating backtracking on substitutions, for stressing the
relevance of regularity in logic programming.

Now we say that an AAR-system is regular iff the set of its proof-trees is a regular search
space. As one can easily see, the regularity of an AAR-system implies the regularity of the
subspaces T(P) and T(P,G). In T(P,G), we can avoid backtracking on substitutions and
search only for most general proof-trees. Therefore in an AAR-system we can use essentially
the same search strategy adopted for SLD-resolution and the same main results hold.

SFrom now on, we suppress mention to the renaming guotientation.

Regular Search Spaces and Constructive Negation 379

The problem is then how to compute canonical continuations. We say that there is a reso-
lution method when canonical continuations can be computed depending on the selected as-
sumption and not on the whole proof-tree.

DEFINITION 3.17 (Resolution method)
A partial function Res(G, Az, R) is a resolution method iff:

e Res(G, Az, R) is defined iff Az can be applied to G by R.
e Res(G, Az, R) = [(8,G,;...;Gn)), where G,;...;G, € R(6G, Az) and the corre-
sponding continuations are canonical.’

If the search space is regular, then for every R, Az and every proof-tree with selected as-
sumption G, either there is canonical continuation (Res(G, Az, R) is defined) or no continua-
tion exists (Res(G, Az, R) is not defined). Moreover, for the same R, Az and selected G, any
two canonical continuations are equivalent; therefore Res(G, Az, R) is defined as an operator
computing equivalence classes. This operator imports all the search properties of pure Prolog,
in particular the independence of the selection function with respect to success-completeness.

3.4 Finite failure and AAR-systems

There is a natural proof-theoretic characterization of finite failure in an AAR-system: call an
assumption failed with respect to a program P, if no axiom of P can be applied to it, and call
a proof-tree k-failed iff it contains at least one failed assumption which occurs in a branch at
height less or equal to k.

DEFINITION 3.18 (k-failure)
A search-tree (T (P, G), X) is k-failed if every leaf is k-failed. It is finitely failed if there is a
k such that it is k-failed.

A proof-theoretic analysis of the abstract idea of negation as failure (NF) can be based on
the above characterization of finite failure. For the sake of simplicity, we consider here only
the P-system, but it should be obvious how this treatment could apply to AAR-systems in gen-
eral, provided that they are regular. Our aim is to correlate k-failed search-trees to the usual
notion of finitely failed SLD-trees (as defined, for example, in [27]). To achieve that (Propo-
sition 3.21) we reconsider selection functions.

First we note that, as a consequence of success-completeness (Corollary 3.16), for every
selection function F a complete search-tree (T (P, G), <) is failed iff so is the corresponding
F-search tree (Gen(P,G), <r). This is refined in Proposition 3.20 with respect to k-failure.
Moreover, the next Proposition (3.19) shows that F-search trees are finite, provided that the
selection function is fair. As usual, the faimess of F' guarantees that in any path of the corre-
sponding F-search tree every open assumption is eventually selected.

PROPOSITION 3.19
If the search tree (T (P, G), <) of a (finite) program P is finitely failed, then every fair F-
search subtree {Gen(P,G), <) is finite.

PROOF. Let F be a fair selection function. Since there is a k such that {T(P,G), <) is k-
failed, fairness guarantees that every path in the subtree (Gen(P, G), <) is finite. Moreover
the latter is finitely branching, since P is finite. [|

7 Assuming the usual standardization apart.

380 Regular Search Spaces and Constructive Negation

PROPOSITION 3.20
Let F be a selection function. If the F-search tree {(Gen(P,G), <) is k-failed, then so is
the corresponding complete tree (T (P, G), X).

PROOF. We prove a more general statement, namely: for a proof-tree II, if the F-search tree
of its continuations (Gen (P, I1), <F) is k-failed, then so is the complete tree (7 (IT, P}, X).
The proof is by induction on the height of (Gen(P,I1), <F).

e Basis. (Gen(P, 11}, <r) has height 0, i.e. the selected assumption F'(II) is k-failed. Our
assert holds because (an instance of) this assumption belongs to every continuation of II.

o Step. (Gen(P,II), <F) has height ¢ + 1. Let II;, ..., II,, be the one-step mgc of II.
For 1 < 1 < n, by the inductive hypothesis on (Gen(P,II;), <), the complete space
(T(P,11,), %) is k-failed. Since every non-trivial continuation of II belongs to some
(T(P,I1,), <), we get our assert.

Therefore k-failure can be finitely discovered, by using fair selection rules. Remark that
the latter two propositions hold for any regular AAR-system.

For definite programs, we can relate k-failed search trees to finitely failed SLD-trees.

PROPOSITION 3.21 (k-failure)
Let P be a definite program, F a fair selection function and A an atom. The SLD-tree for
P U {« A} is finitely failed iff there is a k such that (T (P, G), =) is k-failed.

PROOF. For every selection function F’ and every atom A, the SLD-tree with root + A cor-
responds to a F'-search tree (Gen(P,G), <r) such that, for every node + By, ..., B, of the
SLD-tree, the corresponding node in the F-search tree is a class [I1], where I1 has assumptions
B, ..., Bn. The proof is similar to that for Theorem 2.6. Conversely, one easily sees that,
renaming apart, the assumptions of the proof-trees of an F-search tree originate the required
SLD-tree.

By the above correspondence, we have that the SLD-tree for P U {+ A} is finitely failed
iff (Gen(P,G), Xr) is k-failed. Then our assert follows from Proposition 3.20. [|

3.5 Examples

Now we analyse regularity and the existence of a resolution method for the systems of the
previous sections and others. For the P-systems one can prove that regularity holds (an in-
structive proof can be found in [33]). As a consequence, for every goal G and program P, the
set of the proof-trees T (P, G) is a regular search space and we can use F-search trees to find
proofs of §G. Moreover, the resolution method is defined as follows.

Let V(Vy(Ly A --- A L) — B) be an axiom for the P-system and A be a goal. If the
unification algorithm computes an mgu # of B and A, then

Res(A,V(Vy(L1 A...AL,) = B),P) =[(6,0Ly;...;0L,)]

otherwise Res is undefined. Again note the complete analogy with SLD-resolution. Observe
that no substitution is attempted on the variable(s) ¥ and that, in order to obtain most gen-
eral continuations, § must replace by new names (w.r.t. the current proof-tree) the (possible)
variables of L, ... L,, that do not occur in B.

The F and PF-systems are non-regular systems.

Regular Search Spaces and Constructive Negation 381

EXAMPLE 3.22
Consider the following proof-trees I1;, Iz, II3, where Faz(odd) is

Vz(odd(z) = Jy(z = s(0) A true vV x = 3(s(y)) A odd(y)))

-odd(W) Faz(odd) ~true -odd(v) Faz(odd)

Fazx(odd) (F)
—odd(s(s(W))) —odd(W)

—odd(0)

(F) (F)

indeed, they are similar,® but there is no proof-tree IT such that IT; < IT fori = 1,2, 3.

As far as the last proof-tree is concerned, note first, that among the examples it is the only
one not closed under substitution. Second, its derivation is:

e —~true is generated since W and s(0) unify;

e —odd(v) is generated, since W unifies with s(s(y)) which is not instantiated by the mgu
W/s(s(y)) and v is the eigenvariable renaming the existentially quantified y.

In the absence of regularity, the notions of mgpt and of canonical continuation do not be-
have as desired. This means that we cannot find a success-complete resolution method unless
we admit backtracking on substitutions. In particular Res has to compute many candidate sub-
stitutions and goal sequences: similar results (with different style) are contained in [45, 29].
Thus strategies like SLDNF-resolution cannot be success-complete, as we will discuss in the
next section.

On the other hand, the latter is not the only case where backtracking on substitutions is re-
quested by a condition of non-regularity. Consider the case of higher-order Horn clauses [31].
Itis well known that the unification problem is in general infinitary [46]. And consider the fol-
lowing case, taken from [35]):

Azl : mapfun F nil nil.
Az2: mapfun F X. XS (FX).YS + mapfun F XS YS.

Suppose you are evaluating the goal:

mapfun F [1,1] [(g 1 1), (g 1 2)].

In this case the unification problem is finite, but not unary; F can be assigned to Az.grz,
Az.grl, Az.glz, Ax.gll, leading to configurations like this one, which applies the substitu-
tion F/Az.gzz:

mapfun F(1][(g12)] Az2)

mapfun F(1,1][(g 11), (g 1 2)]

Unfortunately, only the third unification will succeed for the whole goal. No mgpt exists and
thus the interpreter will have to backtrack (potentially for an infinite amount of trials) during
search.? Hence a formulation of Res can be infinitary and look something like:

If Az can be applied to G by R, then Res(G, Az, R) = {[(9;,G,)]}, for 8; € J,
where J is a complete set of unifiers [46] and G; is the sequence of goals correspond-
ingtod,.

8Note that the F rule can be formulated in a way such that the P F-system is closed under substitutions, still it is
not regular. This is also the case for higher-order Hom clauses, addressed below, where closure but not regularity is
guaranteed.

91f, on the other hand, we label the rules with the indication of the relevant substitution, we recover the regularity
of the space, but at the cost of allowing an infinite number of rules.

382 Regular Search Spaces and Constructive Negation

4 Proof-theoretic analysis of NF

We introduce Clark’s explanation of NF, that is we characterize it as provability from the com-
pletion [10]. We use a weakening (in a sense detailed below) of Clark’s completion, together
with the Domain Closure Axiom (DCA) {30]. Then we give our proof-theoretic reading of
the problems of SLDNF-resolution w.r.t. soundness and completeness, namely enlightening
the role of regularity for the latter (point (b) in 4.2)). In Section 5, we introduce the idea of
constructive negation via regular splitting 1o overcome some of these problems and we relate
it with the already developed notion of intensional negation [5].

4.1 F-systems and SLDNF-resolution

Here we relate finite failure to proofs in the Fpc 4-system, that is in the F-system enriched
by the P-rule restricted to applying suitable instances of the Domain Closure Axiom.

DC A depends on the signature ¥ of the underlying language. It essentially says that every
clement of the domain can be represented by a ground term of %, i.e.

(DCA): Vz(V 3z = f())
fex

The following schema is admissible w.r.t. DC A, as shown, for example, in [30], where it
is called proof by case analysis:

DEFINITION 4.1 (Covering)
Let || L|| be the set of ground instances of aliteral L. A E-covering for Lisaseto1L,...,0nL
such that ||oy L|| U - -- U |le. L|| 2 ||L]|. The instance of the DC A-schema corresponding to
a 3-covering for L is

V(Vy(ouLA...Ao,L) > L)

where y are the new variables introduced by o1, L . . ., 0, L (we assume that the range of every
o, contains only new variables that do not occur in L or in the range of every other substitu-
tion).

In the following, we will stipulate T to be finite, being the signature of the underlying pro-
gram, rather than an infinite universal language as in [21, 3]. Moreover we will extend the
notion of covering to arbitrary formulae.

To use the F-system, we associate to a program its failure axioms, which will be applied in
the F-system. The starting point is the only-if part of the completion of a predicate p(. ..):

n h,
Vr(p(z) » \/ iz =t: A A\ Lox)).
i=1 k=1

Forevery ky,...,k, suchthat 1 < k, < h; we infer

Fazy,, k.(p): Vz(p(z) = 3y V(a: =t; AL.g,)).

=1

By convention, the failure axiom of a unit clause introduces the constant true, hence h; > 1is
always fulfilled. Observe that these axioms contain exactly a singleton literal in every disjunct

Regular Search Spaces and Constructive Negation 383

of the consequent. For a program P, Faz(P) will indicate the set of its failure axioms in the
latter sense, called weak completion axioms. The cardinality of Faz,, . . (p) is [[i=; M
where n is the number of clauses and k, the number of literals in each clause of P with head

EXAMPLE 4.2
The only-if part of ¢ (for times), the usual program for computing the product, is:

V(t(a,b,c) + Jz(a=zAb=0Ac=0)V

Iz,y,z,wl@a=zAb=s(y)rc=zAt(z,y,w) A sum(w,:z:,z)))(4 D

From (4.1) we derive the failure axioms:
Y(t(a,b,c) = Iz,y,2z,w ((a=xAb=0Ac=0Atrue)Vv
(a=zAb=s(y)Ac=zAt(z,y,w))).
V(t{a,b,c) =& 3z,y,z,w ((a=xAb=0Ac=0Atrue)Vv
(a=zAb=3s(y) Ac=zAsum(w,z,2))).

Note that, in general, the conjunction of the Fazy,, . x, (p) is notably weaker and does not
imply the only-if part of Comp(p). This is due to the shared binding of local variables, i.c.
those which appears in the body but not in the head of a clause—like w in the former example.
In the case of shared local variables, a factorization of failure axioms is needed. For example:

EXAMPLE 4.3
By DC A, the right-hand side of (4.1) is equivalent to the following factorization:

Jz(a=zAb=0Ac=0)V
Iz,y,z2(a=zAb=s(y) Ac=zAt(z,y,0) A sum(0,z,z)) V
3z,y,2,5(a =z Ab=s(y) Ac=zAt(z,y,5(5)) A sum(s(5), 7, 2)),

which corresponds to the fact that w is covered by 0, s(j). We can derive four failure axioms
from this factorization, parallel to the possible choices between t(z, y, 0), sum(0, z, z) in the
second row and t(z,y, s(3)), sum(s(y), z, z) (in the third one). For example, one of these
axioms is:

Fazl: V(t(a,b,c) = 3z,y,2,7 ((a=zAb=0Ac=0Atrue)V
(a=zAb=s(y)Ac=zAsum(0,z,2)) V
(a=zAb=s(y) Aec=zAt{z,y,35())))

Notice that ~sum(0,0, s(v)); -¢(0,0, (7)) € F(-t(0, s(0),s(v)), Fazxl). If one looks at
the finitely failed SLD-tree for {t(0, 3(0), 3{v))}, one can recognize that such finite failure is
reduced to the finite failure of sum(0,0, s(v)) and —=¢(0, 0, s(j)).

The key issue here is regularity, which is independent from the problems due to shared
local variables. Therefore, we will assume that local variables are restricted to occur only in
a single literal in the body of a clause, similarly to condition (d) in Barbuti’s definition of flat
programs [5]. This can always be achieved by a simple folding step that can be demonstrated
to be semantics preserving. Note that under this hypothesis the weak completion coincides
with Clark’s completion.

384 Regular Search Spaces and Constructive Negation

Moreover we will assume, for the sake of the following two Theorems (4.4 and 4.5) that
the heads of clauses are unrestricted, or lefi-linear, i.e. no variable occurs therein more than
once.!? There are other alternatives, however, as sketched in Example 5.7.

THEOREM 4.4 (Finite failure)
Given a definite program P and an atom A, if PU {+ A} has a finitely failed SLD-tree, then
there is a proof Il :: —A in the Fpc a-system applying only axioms from Faz(P).

The proof requires some additional machinery and is detailed in the Appendix. Now we
approach the relation between finite failure and proofs in the PFpc 4-system. To every nor-
mal program P we associate the set W Comp(P) = Az(P) U Faz(P), where Faz(P) has
been straightforwardly extended to deal with literals.

THEOREM 4.5 (PFpc A/WComp(P) adequacy)

Let P be a normal program and L a literal. If there is a finitely failed SLDNF-tree for PU {+
L}, then there is a PFpc a-proof I :: neg(L) with axioms from W Comp(P). If there is a
SLDNF-refutation of P U { L} with answer substitution d, then there is a PFpc 4-proof
II :: 6L, with axioms from W Comp(P).

PROOF. By induction on the rank of the finitely failed SLDNF-tree, as defined in [27], or of
the SLDNF -refutation.

e Basis. The basis for refutation is analogous to Theorem 2.6 and the basis for finitely failed
trees to Theorem 4.4 (see Remark A.17 in the Appendix).

o Step for refutation. We proceed as in Theorem 2.6, by Step 0 and Step i+1, provided that
the selected literal L,,, is positive. Suppose in Step i+1 L,,, = ~A. In this case, there is a
finitely failed tree of rank k for PU {« A}. By inductive hypothesis we have a PFpc 4-
proof IT :: - A,

o Step for finitely failed trees. Let ® be afinitely failed SLDNF-tree of rank k + 1, with root
+ L. Before translating ® into a proof in the PFp¢ a-system, we delete all the nodes
« Ly,...,L,,..., L, where the selected literal is a negated atom L, = —B and there is
a finitely failed tree (of rank k) for PU{«+ B}. Note that this step is an implicit applica-
tion of weakening. More precisely, we delete the descendant «— L;,...,L,_, Lit1,...,
Ly,,of « L,,...,L;,..., L, and we add the (suitable instances of) L; in all the nodes
under the deleted one. One easily sees that we can iterate this process until we obtain a
SLDNF-tree ®* such that in every intermediate node the selected literal is an atom.
®* is such that L is the root and A;,..., A,,-B,,...,~B,, are the literals selected in
the leafs. Aj,..., A, have a finitely failed SLDNF-tree of rank < k, and B;,..., B,
have a SLDNF-refutation of rank < k. Therefore, by the inductive hypothesis, we have
PFpca-proofs I1; :: -A,,...,II, = =A,, A, : By,...,A, 2 B, and by Remark
A.17, there is a PFpc 4-proof I1 :: neg(L).

REMARK 4.6

The proof enlightens the proviso on open literals. While no problem arises from 4,,..., A,,
were By, ..., By, not ground, by inductive hypothesis we would get proofs Ay :: 6By, ...,
Ap, i 0, By, and this would correspond to unsound substitutions of eigenvariables of ®*.

10yt is, nevertheless, well known that every clause with restricted head can be left-linearized by introducing new
variables and constraining them by a new predicate, say eq, axiomatized by eq(X, X) [48, 5].

Regular Search Spaces and Constructive Negation 385
To conclude, a few observations are in order.

¢ DC A is an axiom-schema, and therefore cannot be properly applied by an AAR. It could be
substituted by the collection of all its instances, but this would give rise to infinitely many
axioms. A working alternative is to introduce a systematic mechanism to generate deeper
and deeper instances of the schema. This solution is similar to the herbrand procedure
of [5]. We will not develop this issue here. Our aim is to underline the role of regularity,
which is an independent cause of the incompleteness of SLDNF-resolution.

e As is technically shown in the Appendix, DC A is not needed for two classes of programs.
1. Krom programs [20]. In this case the body of a non-unit clause contains just one literal.
In our following examples, we will consider mainly Krom programs.
2. Left-linear programs without local variables. In this case, if A4 (with A open)is a logi-
cal consequence of the completion, then there is a covering of —A4 such that its elements
have a P F-proof with axioms from the weak completion.

4.2 On (un)soundness and (in)completeness of NF

SLDNF -resolution has a non-logical behaviour if open negative goals are selected. In our
model, we can distinguish different causes for that.

(a) Soundness problems: during the computation (logically unsound) substitutions on eigen-
variables may occur.

(b) Success-completeness problems: given an open goal G, SLDNF-resolution fails to return
an answer, even if there is a PF-proof IT :: 8G: the culprit can be found in the lack of
regularity, which lies at the basis of the success-incompleteness of N F.

(c) Incompleteness of the PFpc 4-system: there are goals 8G such that Comp(P) | G
in classical logic but no PFpca-proof Il :: 8G exists. For example, consider the well
known example: p + ¢, p « —g, ¢ & q. No PFpc 4-proof of p exists, even if it is a
logical consequence of the completion. We will not discuss this issue further. Note that
point (b) and (c) are independent: if the PFpc a- system were complete w.r.t. classical
logic, yet not regular, the success-incompleteness issue would not be solved.

As far as (a) is concerned, this corresponds to the fact that a non-legal substitution on the
eigenvariables may be introduced in some continuation step, as shown by the following ex-
ample, taken from [27].

Azl: p:-—¢(X)
Az2: q(a).

In standard Prolog, using an unsound selection function, the goal « —p succeeds (since « p
fails), although it is not a logical consequence of the completion of the program. In our model,
safeness (i.e. soundness) is enforced not by an external condition on the selection function, but
by the usual proof-theoretic proviso on eigenvariables, i.e. that they cannot be instantiated by
substitutions, as the following proof-tree shows. Once we have obtained the goal ¢(u), with
eigenvariable u, we cannot continue our proof-tree in a sound way; so we do not obtain any
proof of —p.!!

1 Note that in a more detailed representation of the SLDNF-success tree, that node and the branch ending with it
would have been labelled with something like *floundering’, while in our approach this is just a failing branch.

