
The Concurrent Calculi Formalisation Benchmark

Marco Carbone1[0000−0001−9479−2632], David Castro-Perez2[0000−0002−6939−4189],
Francisco Ferreira3[0000−0001−8494−7696], Lorenzo Gheri4[0000−0002−3191−7722],

Frederik Krogsdal Jacobsen5[0000−0003−3651−8314], Alberto
Momigliano6[0000−0003−0942−4777], Luca Padovani7[0000−0001−9097−1297], Alceste

Scalas5[0000−0002−1153−6164], Dawit Tirore1[0000−0002−1997−5161], Martin
Vassor8[0000−0002−2057−0495], Nobuko Yoshida8[0000−0002−3925−8557], and Daniel

Zackon9[0009−0008−6153−2955]

1 IT University of Copenhagen, Copenhagen, Denmark maca@itu.dk, dati@itu.dk
2 University of Kent, Canterbury, United Kingdom d.castro-perez@kent.ac.uk

3 Royal Holloway, University of London, Egham, United Kingdom
francisco.ferreiraruiz@rhul.ac.uk

4 University of Liverpool, Liverpool, United Kingdom
lorenzo.gheri@liverpool.ac.uk

5 Technical University of Denmark, Kgs. Lyngby, Denmark fkjac@dtu.dk,
alcsc@dtu.dk

6 Università degli Studi di Milano, Milan, Italy momigliano@di.unimi.it
7 Università di Camerino, Camerino, Italy luca.padovani@unicam.it

8 University of Oxford, Oxford, United Kingdom martin.vassor@cs.ox.ac.uk,
nobuko.yoshida@cs.ox.ac.uk

9 McGill University, Montreal, Canada daniel.zackon@mcgill.ca

Abstract. POPLMark and POPLMark Reloaded sparked a flurry of
work on machine-checked proofs, and fostered the adoption of proof
mechanisation in programming language research. Both challenges were
purposely limited in scope, and they do not address concurrency-related
issues. We propose a new collection of benchmark challenges focused
on the difficulties that typically arise when mechanising formal models
of concurrent and distributed programming languages, such as process
calculi. Our benchmark challenges address three key topics: linearity, scope
extrusion, and coinductive reasoning. The goal of this new benchmark
is to clarify, compare, and advance the state of the art, fostering the
adoption of proof mechanisation in future research on concurrency.

Keywords: Mechanisation · Process calculi · Benchmark · Linearity ·
Scope extrusion · Coinduction

1 Introduction

The POPLMark challenge [4] played a pivotal role in advancing the field of proof
assistants, libraries, and best practices for the mechanisation of programming
language research. By providing a shared framework for systematically evaluating
mechanisation techniques, it catalysed a significant shift towards publications that

2 M. Carbone et al.

include mechanised proofs within the programming language research community.
POPLMark Reloaded [1] introduced a similar programme for proofs using logical
relations. These initiatives had a narrow focus, and their authors recognised the
importance of addressing topics such as coinduction and linearity in the future.

In this spirit, we introduce a new collection of benchmarks crafted to tackle
common challenges encountered during the mechanisation of formal models of
concurrent and distributed programming languages. We focus on process calculi,
as they provide a simple but realistic showcase of these challenges. Concurrent
calculi are notably subtle: for instance, it took some years before an incorrect
subject reduction proof in the original paper on session subtyping [27] was
discovered and then rectified in the extended journal version [28] with the use of
polarities. Similarly, other key results in papers on session types have subsequently
been proven incorrect [29,47], demonstrating the need for machine-checked proofs.

While results about concurrent formalisms have already been mechanised
(as we will discuss further below), our experience is that choosing appropriate
mechanisation techniques and tools remains a significant challenge and that their
trade-offs are not well understood. This often leads researchers toward a trial-and-
error approach, resulting in sub-optimal solutions, wasted mechanisation efforts,
and techniques and results that are hard to reuse. For example, Cruz-Filipe et
al. [19] note that the high-level parts of mechanised proofs closely resemble the
informal ones, while the main challenge lies in getting the infrastructure right.

Our benchmark challenges (detailed in appendix A and on our website)
consider in isolation three key aspects that frequently pose difficulties when
mechanising concurrency theory, which we will discuss in more detail in the next
section: linearity, scope extrusion, and coinductive reasoning. Mechanisations
must often address several of these aspects at the same time; however, we see
the combination of techniques as a next step, as discussed in section 3.

We have begun collecting solutions to our challenges on our website:

https://concurrentbenchmark.github.io/

We intend to use the website to promote best practices and tutorials derived from
solutions to our challenges. We encourage readers to try the challenges using
their favourite techniques, and to send us their solutions and experience reports.

2 Overview and Design Considerations

In this section, we outline the factors considered when designing the benchmark
challenges. We begin with some general remarks, then describe the individual
design considerations for each challenge, and the criteria for evaluating solutions.

Similarly to the authors of POPLMark, we seek to answer several questions:

(Q1) What is the current state of the art in the mechanisation of the meta-theory
of process calculi?

(Q2) Which techniques and best practices can be recommended when starting
new mechanisation projects involving process calculi?

https://concurrentbenchmark.github.io/

The Concurrent Calculi Formalisation Benchmark 3

(Q3) What improvements are needed to make mechanisation tools more user-
friendly with regard to the issues faced when mechanising process calculi?

To provide a framework in which to answer these questions, our benchmark
is designed to satisfy three main design goals:

(G1) To enable the comparison of proof mechanisation approaches by making
the challenges accessible to mechanisation experts who may be unfamiliar
with concurrency theory;

(G2) To encourage the development of guidelines and tutorials demonstrating
and comparing existing proof mechanisation techniques, libraries, and
proof assistant features; and

(G3) To prioritise the exploration of mechanisation techniques that are reusable
for future research.

We also aim at strengthening the culture of mechanisation, by rallying the
community to collaborate on exploring and developing new tools and techniques.

To achieve design goal (G1), our challenges explore the three aspects (lin-
earity, scope extrusion, coinduction) independently, so that they may be solved
individually and in any order; each challenge is small and easily understandable
with basic knowledge of textbook concurrency theory, process calculi, and type
theory. The process calculi used in the challenges focus on the features that we
want to emphasise, and omit all constructs that would complicate the mechanisa-
tion without bringing tangible insights. The minimality and uniformity of the
calculi also allows us to target design goal (G2). Aligned with design goal (G3),
our challenges concern the fundamental meta-theory of process calculi. Our chal-
lenges centre around well-established results, showcasing proof techniques that
can be leveraged in many applications (as we will further discuss in section 3).

2.1 Linearity

Linear typing systems allow for the tracking of resource usage in a program. In
the case of typed (in particular, session-typed) process calculi, linearity is widely
used for checking if and how a channel is used to send or receive values. This
substructurality [42, Ch. 1] gives rise to mechanisation difficulties: e.g . deciding
how to split the typing context in a parallel composition.

The goal of our challenge on linear reasoning is to prove a type safety theorem
for a process calculus with session types, by combining subject reduction with
the absence of errors. For simplicity we model only linear (as opposed to shared)
channels. Inspired by Vasconcelos [51], we define a syntax where a restriction
(νab) binds two dual names a and b as opposite endpoints of the same channel;
their duality is reflected in the type system. We model a simple notion of error:
well-typed processes must never use dual channel endpoints in a non-dual way
(e.g . by performing concurrent send/receive operations on the same endpoint, or
two concurrent send operations on dual endpoints). The operational semantics is
a standard reduction relation. Proving subject reduction thus requires proving
type preservation for structural congruence.

4 M. Carbone et al.

We designed this challenge to focus on linear reasoning while minimising
definitions and other concerns. We therefore forgo name passing: send/receive
operations only support values that do not include channel names, so the topology
of the communication network described by a process cannot change. We do not
allow recursion or replication, hence infinite behaviours cannot be expressed. We
also forgo more sophisticated notions of error-freedom (e.g . deadlock freedom) as
proving them would distract from the core linear aspects of the challenge.

In mechanised meta-theory, addressing linearity means choosing an appropri-
ate representation of a linear context. While the latter is perhaps best seen as a
multiset, most proof assistants have better support for lists. This representation
is intuitive, but may require establishing a large number of technical lemmata
that are orthogonal to the problem under study (in our case, proving type safety
for session types). Several designs are possible: one can label occurrences of
resources to constrain their usage (e.g . [18]), or impose a multiset structure over
lists (e.g . [17, 21]). Alternatively, contexts can be implemented as finite maps (as
in [14]), whose operations are sensitive to a linear discipline. In all these cases,
the effort required to develop the infrastructure is significant. One alternative
strategy is to bypass the problem of context splitting by adopting ideas from
algorithmic linear type checking. One such approach, known as “typing with
leftovers,” is exemplified in [53]. Similarly, context splitting can be eliminated by
delegating linearity checks to a linear predicate defined on the process structure
(e.g . [46]). These checks serve as additional conditions within the typing rules.
Whatever the choice, list-based encodings can be refined to be intrinsically-typed
if the proof assistant supports dependent types (see [18,44,49]).

A radically different approach is to adopt a substructural meta-logical frame-
work, which handles resource distribution implicitly, including splitting and
substitution: users need only map their linear operations to the ones offered by
the framework. The only such framework is Celf [48] (see the encoding of session
types in [10]); unfortunately, Celf does not yet fully support the verification of
meta-theoretic properties. A compromise is the two-level approach, i.e. encoding
a substructural specification logic in a mainstream proof assistant and then using
that logic to state and prove linear properties (for a recent example, see [25]).

2.2 Scope Extrusion

This challenge revolves around the mechanisation of scope extrusion, by which a
process can send restricted names to another process, as long as the restriction
can safely be extruded to include the receiving process. The setting for this
challenge is a “classic” untyped π-calculus, where (unlike the calculi in the other
challenges) names can be sent and received, and bound by input constructs. We
define two different semantics for our system:

1. A reduction system: this avoids explicit reasoning about scope extrusion by
using structural congruence, allowing implementors to explore different ways
to encode the latter (e.g . via process contexts or compatible refinement);

2. An (early) labelled transition system.

The Concurrent Calculi Formalisation Benchmark 5

The goal of our challenge on scope extrusion is to prove that the two semantics
are equivalent up to structural congruence.

This is the challenge most closely related to POPLMark, as it concerns the
properties of binders, whose encoding has been extensively studied with respect to
λ-calculi. Process calculi present additional challenges, typically including several
different binding constructs: inputs bind a received name or value, recursive
processes bind recursion variables, and restrictions bind names. The first two act
similarly to the binders in λ-calculi, but restrictions may be more challenging
due to scope extrusion. Scope extrusion requires reasoning about free variables,
so approaches that identify α-equivalent processes cannot be directly applied.

Given those peculiarities, the syntax and semantics of π-calculi have been
mechanised from an early age (see [39]) with many proof assistants and in many
encoding styles. Despite this, almost all of these mechanisations rely on ad-
hoc solutions to encode scope extrusion. They range from concrete encodings
based on named syntax [39] to basic de Bruijn [32, 41] and locally-nameless
representation [14]. Nominal approaches are also common (see [8]), but they
may be problematic in proof assistants based on constructive type theories. An
overall comparison is still lacking, but the case study [3] explores four approaches
to encoding binders in Coq in the context of higher-order process calculi. The
authors report that working directly with de Bruijn indices was easiest since the
approaches developed for λ-calculus binders worked poorly with scope extrusion.

Higher-order abstract syntax (HOAS) has seen extensive use in formal rea-
soning in this area [15, 16,24, 34, 50]. Its weak form aligns well with mainstream
inductive proof assistants, significantly simplifying the encoding of typing systems
and operational semantics. However, when addressing more intricate concepts
like bisimulation, extensions to HOAS are needed. These extensions may take the
form of additional axioms [34] or require niche proof assistants such as Abella,
which features a special quantifier for handling properties related to names [26].

2.3 Coinduction

Process calculi typically include constructs that allow processes to adopt infinite
behaviours. Coinduction serves as a fundamental method for the definition and
analysis of infinite objects, enabling the examination of their behaviours.

The goal of our challenge on coinductive reasoning is to prove that strong
barbed bisimilarity can be turned into a congruence by making it sensitive to
substitution and parallel composition. The crux of our challenge is the effective
use of coinductive up-to techniques. The intention is that the result should be
relatively easy to achieve once the main properties of bisimilarity are established.

The setting for our challenge is an untyped π-calculus augmented with process
replication in order to enable infinite behaviours. We do not include name passing
since it is orthogonal to our aim of exploring coinductive proof techniques. We
base our definition of bisimilarity on a labelled transition system semantics and
an observability predicate describing the communication steps available to a
process. The description of strong barbed bisimulation is one of the first steps
when studying the behaviour of process calculi, both in textbooks (e.g . [45]) and

6 M. Carbone et al.

in existing mechanisations. Though weak barbed congruence is a more common
behavioural equivalence, we prefer strong equivalences to simplify the theory by
avoiding the need to abstract over the number of internal transitions in a trace.

While many proof assistants support coinductive techniques, they do so
through different formalisms. Some systems even offer multiple abstractions for
utilising coinduction. For instance, Agda offers musical notation, co-patterns and
sized types [2]; Coq features guarded recursion and refined fixed point approaches
via the parameterised coinduction [36] and interaction tree [52] libraries.

When reasoning over bisimilarity many authors rely on the native coinduction
offered by the chosen proof assistant [9, 29, 37, 49], while others prefer a more
“set-theoretic” approach [8,32,38,43]. Some use both and establish an internal
adequacy [34]. Few extend the proof assistant foundations to allow, e.g ., reasoning
about bisimilarity up-to [16].

2.4 Evaluation Criteria

The motivation behind our benchmark is to obtain evidence towards answering
questions (Q1) to (Q3). We are therefore interested not only in the solutions,
but also in the experience of solving the challenges with the chosen approach.
Solutions to our challenges should be compared on three axes:

1. Mechanisation overhead: the amount of manually-written infrastructure and
setup needed to express the definitions in the mechanisation;

2. Adequacy of the formal statements in the mechanisation: whether the proven
theorems are easily recognisable as the theorems from the challenge; and

3. Cost of entry for the tools and techniques employed: the difficulty of learning
to use the techniques.

Solutions to our challenges need not strictly follow the definitions and lemmata set
out in the challenge text, but solutions which deviate from the original challenges
should present more elaborate argumentation for their adequacy.

3 Future Work and Conclusions

Our benchmark challenges do not cover all issues in the field, but focus on
the fundamental aspects of linearity, scope extrusion, and coinduction. Many
mechanisations need to combine techniques to handle several of these aspects, and
some may also need to handle aspects that are not covered by our benchmark.

Combining techniques for mechanising the fundamental aspects covered in our
benchmark is non-trivial. While we focus on the aspects individually to simplify
the challenges, we are also interested in exploring how techniques interact.

Much current research on concurrent calculi includes aspects that are not
covered by our benchmark challenges, for example constructs such as choice
constructs and recursion. Some interesting research topics that build on the
fundamental aspects in our benchmark include multiparty session types [33],
choreographies [13], higher-order calculi [31], conversation types [12], psi-calculi [7],

The Concurrent Calculi Formalisation Benchmark 7

and encodings between different calculi [22, 30]. The meta-theory of these topics
includes aspects—e.g . well-formedness conditions on global types, partiality of
end-point projection functions, etc.—that we do not address.

Our coinduction challenge only addresses two notions of process equivalence,
but many more exist in the literature. Coinduction may also play a role in
recursive processes and session types: recursive session types can be expressed in
infinitary form by interpreting their typing rules coinductively [23,35].

Unlike POPLMark, we consider animation of calculi (as in [15]) out of scope
for our benchmark. Finally, our challenges encourage, but do not require, exploring
proof automation, as offered by e.g . the Hammer protocol [11,20].

Ultimately, the fundamental aspects covered by our benchmark serve as the
building blocks for most current research on concurrent calculi. It is our hope
and aim that exploring and comparing solutions to our challenges will move the
community closer to a future where the key basic proof techniques for concurrent
calculi are as easy to mechanise as they are to write on paper.

References

1. Abel, A., Allais, G., Hameer, A., Pientka, B., Momigliano, A., Schäfer, S., Stark, K.:
POPLMark Reloaded: Mechanizing proofs by logical relations. J. Funct. Program.
29, 19 (2019). https://doi.org/10.1017/S0956796819000170

2. Abel, A., Pientka, B., Thibodeau, D., Setzer, A.: Copatterns: Programming infinite
structures by observations. In: POPL ’13: Proc. 40th Annual ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages. p. 27–38. ACM, New
York (2013). https://doi.org/10.1145/2429069.2429075

3. Ambal, G., Lenglet, S., Schmitt, A.: HOπ in Coq. J. Autom. Reason. 65(1), 75–124
(2021). https://doi.org/10.1007/S10817-020-09553-0

4. Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P.,
Vytiniotis, D., Washburn, G., Weirich, S., Zdancewic, S.: Mechanized metatheory
for the masses: The POPLMark challenge. In: Hurd, J., Melham, T. (eds.) Theorem
Proving in Higher Order Logics. pp. 50–65. Springer, Berlin & Heidelberg (2005).
https://doi.org/10.1007/11541868_4

5. Barber, A.: Dual intuitionistic linear logic. Tech. Rep. ECS-LFCS-96-347,
University of Edinburgh (1996), https://www.lfcs.inf.ed.ac.uk/reports/96/
ECS-LFCS-96-347/

6. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics, Studies in
Logic and the Foundation of Mathematics, vol. 103. North-Holland, 2 edn. (1984)

7. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: A framework for
mobile processes with nominal data and logic. Log. Methods Comput. Sci. 7 (Mar
2011). https://doi.org/10.2168/LMCS-7(1:11)2011

8. Bengtson, J., Parrow, J.: Formalising the pi-calculus using nominal logic. Log.
Methods Comput. Sci. 5 (Jun 2009). https://doi.org/10.2168/LMCS-5(2:16)
2009

9. Bengtson, J., Parrow, J., Weber, T.: Psi-calculi in Isabelle. J. Autom. Reason. 56,
1–47 (2016). https://doi.org/10.1007/s10817-015-9336-2

10. Bock, P., Murawska, A., Bruni, A., Schürmann, C.: Representing session types
(2016), https://pure.itu.dk/en/publications/representing-session-types,
in Dale Miller’s Festschrift

https://doi.org/10.1017/S0956796819000170
https://doi.org/10.1017/S0956796819000170
https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1007/S10817-020-09553-0
https://doi.org/10.1007/S10817-020-09553-0
https://doi.org/10.1007/11541868_4
https://doi.org/10.1007/11541868_4
https://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/
https://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/
https://doi.org/10.2168/LMCS-7(1:11)2011
https://doi.org/10.2168/LMCS-7(1:11)2011
https://doi.org/10.2168/LMCS-5(2:16)2009
https://doi.org/10.2168/LMCS-5(2:16)2009
https://doi.org/10.2168/LMCS-5(2:16)2009
https://doi.org/10.2168/LMCS-5(2:16)2009
https://doi.org/10.1007/s10817-015-9336-2
https://doi.org/10.1007/s10817-015-9336-2
https://pure.itu.dk/en/publications/representing-session-types

8 M. Carbone et al.

11. Böhme, S., Nipkow, T.: Sledgehammer: Judgement day. In: Giesl, J., Hähnle, R.
(eds.) IJCAR ’10: Proc. 5th Int. Joint Conf. on Automated Reasoning. Lect. Notes
Comput. Sci., vol. 6173, pp. 107–121. Springer (2010). https://doi.org/10.1007/
978-3-642-14203-1_9

12. Caires, L., Vieira, H.T.: Conversation types. Theor. Comput. Sci. 411(51-52),
4399–4440 (2010). https://doi.org/10.1016/j.tcs.2010.09.010

13. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: Multiparty asynchronous
global programming. In: POPL ’13: Proc. 40th Annual ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages. p. 263–274. ACM, New York
(2013). https://doi.org/10.1145/2429069.2429101

14. Castro, D., Ferreira, F., Yoshida, N.: EMTST: Engineering the meta-theory of session
types. In: Biere, A., Parker, D. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems. Lect. Notes Comput. Sci., vol. 12079, pp. 278–285. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45237-7_17

15. Castro-Perez, D., Ferreira, F., Gheri, L., Yoshida, N.: Zooid: A DSL for certified
multiparty computation: From mechanised metatheory to certified multiparty
processes. In: PLDI ’21: Proc. 42nd ACM SIGPLAN Int. Conf. on Programming
Language Design and Implementation. p. 237–251. ACM, New York (2021). https:
//doi.org/10.1145/3453483.3454041

16. Chaudhuri, K., Cimini, M., Miller, D.: A lightweight formalization of the metatheory
of bisimulation-up-to. In: Leroy, X., Tiu, A. (eds.) CPP ’15: Proc. 4th ACM
SIGPLAN Conf. on Certified Programs and Proofs. pp. 157–166. ACM (2015).
https://doi.org/10.1145/2676724.2693170

17. Chaudhuri, K., Lima, L., Reis, G.: Formalized meta-theory of sequent calculi for
linear logics. Theor. Comput. Sci. 781, 24–38 (2019). https://doi.org/10.1016/
j.tcs.2019.02.023

18. Ciccone, L., Padovani, L.: A dependently typed linear π-calculus in Agda. In: PPDP
’20: 22nd Int. Symp. on Principles and Practice of Declarative Programming. pp.
8:1–8:14. ACM (2020). https://doi.org/10.1145/3414080.3414109

19. Cruz-Filipe, L., Montesi, F., Peressotti, M.: Formalising a Turing-complete choreo-
graphic language in Coq. In: Cohen, L., Kaliszyk, C. (eds.) ITP ’21: Proc. 12th
Int. Conf. on Interactive Theorem Proving. Leibniz Int. Proc. Inform., vol. 193, pp.
15:1–15:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2021). https://doi.org/10.4230/LIPIcs.ITP.2021.15

20. Czajka, L., Kaliszyk, C.: Hammer for Coq: Automation for dependent type
theory. J. Autom. Reason. 61(1-4), 423–453 (2018). https://doi.org/10.1007/
S10817-018-9458-4

21. Danielsson, N.A.: Bag equivalence via a proof-relevant membership relation. In:
ITP ’12: Proc. 3rd Int. Conf. on Interactive Theorem Proving. Lect. Notes Com-
put. Sci., vol. 7406, pp. 149–165. Springer (2012). https://doi.org/10.1007/
978-3-642-32347-8_11

22. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. Inf. Comput. 256,
253–286 (2017). https://doi.org/10.1016/j.ic.2017.06.002

23. Derakhshan, F., Pfenning, F.: Circular proofs as session-typed processes: A local
validity condition. Log. Methods Comput. Sci. 18(2) (2022). https://doi.org/10.
46298/LMCS-18(2:8)2022

24. Despeyroux, J.: A higher-order specification of the π-calculus. In: van Leeuwen,
J., Watanabe, O., Hagiya, M., Mosses, P.D., Ito, T. (eds.) Theoretical Computer
Science: Exploring New Frontiers of Theoretical Informatics. Lect. Notes Comput.
Sci., vol. 1872, pp. 425–439. Springer, Berlin & Heidelberg (2000). https://doi.
org/10.1007/3-540-44929-9_30

https://doi.org/10.1007/978-3-642-14203-1_9
https://doi.org/10.1007/978-3-642-14203-1_9
https://doi.org/10.1007/978-3-642-14203-1_9
https://doi.org/10.1007/978-3-642-14203-1_9
https://doi.org/10.1016/j.tcs.2010.09.010
https://doi.org/10.1016/j.tcs.2010.09.010
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1007/978-3-030-45237-7_17
https://doi.org/10.1007/978-3-030-45237-7_17
https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1145/2676724.2693170
https://doi.org/10.1145/2676724.2693170
https://doi.org/10.1016/j.tcs.2019.02.023
https://doi.org/10.1016/j.tcs.2019.02.023
https://doi.org/10.1016/j.tcs.2019.02.023
https://doi.org/10.1016/j.tcs.2019.02.023
https://doi.org/10.1145/3414080.3414109
https://doi.org/10.1145/3414080.3414109
https://doi.org/10.4230/LIPIcs.ITP.2021.15
https://doi.org/10.4230/LIPIcs.ITP.2021.15
https://doi.org/10.1007/S10817-018-9458-4
https://doi.org/10.1007/S10817-018-9458-4
https://doi.org/10.1007/S10817-018-9458-4
https://doi.org/10.1007/S10817-018-9458-4
https://doi.org/10.1007/978-3-642-32347-8_11
https://doi.org/10.1007/978-3-642-32347-8_11
https://doi.org/10.1007/978-3-642-32347-8_11
https://doi.org/10.1007/978-3-642-32347-8_11
https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.46298/LMCS-18(2:8)2022
https://doi.org/10.46298/LMCS-18(2:8)2022
https://doi.org/10.46298/LMCS-18(2:8)2022
https://doi.org/10.46298/LMCS-18(2:8)2022
https://doi.org/10.1007/3-540-44929-9_30
https://doi.org/10.1007/3-540-44929-9_30
https://doi.org/10.1007/3-540-44929-9_30
https://doi.org/10.1007/3-540-44929-9_30

The Concurrent Calculi Formalisation Benchmark 9

25. Felty, A.P., Olarte, C., Xavier, B.: A focused linear logical framework and its
application to metatheory of object logics. Math. Struct. Comput. Sci. 31(3),
312–340 (2021). https://doi.org/10.1017/S0960129521000323

26. Gacek, A., Miller, D., Nadathur, G.: Nominal abstraction. Inf. Comput. 209(1),
48–73 (2011). https://doi.org/10.1016/J.IC.2010.09.004

27. Gay, S.J., Hole, M.: Types and subtypes for client-server interactions. In: Swierstra,
S.D. (ed.) ESOP ’99: Proc. 8th European Symp. on Programming. Lect. Notes
Comput. Sci., vol. 1576, pp. 74–90. Springer (1999). https://doi.org/10.1007/
3-540-49099-X_6

28. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Informatica
42(2-3), 191–225 (2005). https://doi.org/10.1007/S00236-005-0177-Z

29. Gay, S.J., Thiemann, P., Vasconcelos, V.T.: Duality of session types: The final
cut. In: Proc. PLACES 2020. Electronic Proc. in Theoretical Computer Science,
vol. 314, p. 23–33. Open Publishing Association (Apr 2020). https://doi.org/10.
4204/eptcs.314.3

30. Gorla, D.: Towards a unified approach to encodability and separation results
for process calculi. Inf. Comput. 208(9), 1031–1053 (2010). https://doi.org/10.
1016/j.ic.2010.05.002

31. Hirsch, A.K., Garg, D.: Pirouette: Higher-order typed functional choreographies.
Proc. ACM Program. Lang. 6 (Jan 2022). https://doi.org/10.1145/3498684

32. Hirschkoff, D.: A full formalisation of π-calculus theory in the calculus of construc-
tions. In: Gunter, E.L., Felty, A. (eds.) Theorem Proving in Higher Order Logics.
Lect. Notes Comput. Sci., vol. 1275, pp. 153–169. Springer, Berlin & Heidelberg
(1997). https://doi.org/10.1007/BFb0028392

33. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1) (Mar 2016). https://doi.org/10.1145/2827695

34. Honsell, F., Miculan, M., Scagnetto, I.: π-calculus in (co)inductive-type theory.
Theoretical Computer Science 253(2), 239–285 (2001). https://doi.org/10.1016/
S0304-3975(00)00095-5

35. Horne, R., Padovani, L.: A logical account of subtyping for session types. In:
Castellani, I., Scalas, A. (eds.) Proc. 14th Workshop on Programming Language
Approaches to Concurrency and Communication-Centric Software. EPTCS, vol. 378,
pp. 26–37. Open Publishing Association (2023). https://doi.org/10.4204/EPTCS.
378.3

36. Hur, C.K., Neis, G., Dreyer, D., Vafeiadis, V.: The power of parameterization in
coinductive proof. In: POPL ’13: Proc. 40th Annual ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages. p. 193–206. ACM, New York
(2013). https://doi.org/10.1145/2429069.2429093

37. Kahsai, T., Miculan, M.: Implementing spi calculus using nominal techniques. In:
Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) Logic and Theory of Algorithms.
Lect. Notes Comput. Sci., vol. 5028, pp. 294–305. Springer, Berlin & Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69407-6_33

38. Maksimović, P., Schmitt, A.: HOCore in Coq. In: Urban, C., Zhang, X. (eds.)
Interactive Theorem Proving. Lect. Notes Comput. Sci., vol. 9236, pp. 278–293.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22102-1_19

39. Melham, T.F.: A mechanized theory of the π-calculus in HOL. Nordic J. of Com-
puting 1(1), 50–76 (Mar 1994)

40. Milner, R.: Communication and Concurrency. Prentice-Hall, USA (1989)
41. Perera, R., Cheney, J.: Proof-relevant π-calculus: A constructive account of con-

currency and causality. Math. Struct. Comput. Sci. 28(9), 1541–1577 (2018).
https://doi.org/10.1017/S096012951700010X

https://doi.org/10.1017/S0960129521000323
https://doi.org/10.1017/S0960129521000323
https://doi.org/10.1016/J.IC.2010.09.004
https://doi.org/10.1016/J.IC.2010.09.004
https://doi.org/10.1007/3-540-49099-X_6
https://doi.org/10.1007/3-540-49099-X_6
https://doi.org/10.1007/3-540-49099-X_6
https://doi.org/10.1007/3-540-49099-X_6
https://doi.org/10.1007/S00236-005-0177-Z
https://doi.org/10.1007/S00236-005-0177-Z
https://doi.org/10.4204/eptcs.314.3
https://doi.org/10.4204/eptcs.314.3
https://doi.org/10.4204/eptcs.314.3
https://doi.org/10.4204/eptcs.314.3
https://doi.org/10.1016/j.ic.2010.05.002
https://doi.org/10.1016/j.ic.2010.05.002
https://doi.org/10.1016/j.ic.2010.05.002
https://doi.org/10.1016/j.ic.2010.05.002
https://doi.org/10.1145/3498684
https://doi.org/10.1145/3498684
https://doi.org/10.1007/BFb0028392
https://doi.org/10.1007/BFb0028392
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2827695
https://doi.org/10.1016/S0304-3975(00)00095-5
https://doi.org/10.1016/S0304-3975(00)00095-5
https://doi.org/10.1016/S0304-3975(00)00095-5
https://doi.org/10.1016/S0304-3975(00)00095-5
https://doi.org/10.4204/EPTCS.378.3
https://doi.org/10.4204/EPTCS.378.3
https://doi.org/10.4204/EPTCS.378.3
https://doi.org/10.4204/EPTCS.378.3
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1007/978-3-540-69407-6_33
https://doi.org/10.1007/978-3-540-69407-6_33
https://doi.org/10.1007/978-3-319-22102-1_19
https://doi.org/10.1007/978-3-319-22102-1_19
https://doi.org/10.1017/S096012951700010X
https://doi.org/10.1017/S096012951700010X

10 M. Carbone et al.

42. Pierce, B.C. (ed.): Advanced Topics in Types and Programming Languages. MIT
Press, London (Dec 2004)

43. Pohjola, J.r., Gómez-Londoño, A., Shaker, J., Norrish, M.: Kalas: A verified, end-
to-end compiler for a choreographic language. In: Andronick, J., de Moura, L. (eds.)
ITP ’22: Proc. 13th Int. Conf. on Interactive Theorem Proving. Leibniz Int. Proc.
Inform., vol. 237, pp. 27:1–27:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.ITP.2022.27

44. Rouvoet, A., Poulsen, C.B., Krebbers, R., Visser, E.: Intrinsically-typed definitional
interpreters for linear, session-typed languages. In: Proc. CPP ’20. pp. 284–298.
ACM (2020). https://doi.org/10.1145/3372885.3373818

45. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Cambridge
University Press, USA (2001)

46. Sano, C., Kavanagh, R., Pientka, B.: Mechanizing session-types using a structural
view: Enforcing linearity without linearity. Proc. ACM Program. Lang. 7(OOPSLA),
235:374–235:399 (Oct 2023). https://doi.org/10.1145/3622810

47. Scalas, A., Yoshida, N.: Less is more: Multiparty session types revisited. Proc. ACM
Program. Lang. 3 (Jan 2019). https://doi.org/10.1145/3290343

48. Schack-Nielsen, A., Schürmann, C.: Celf - A logical framework for deductive and con-
current systems (system description). In: IJCAR. Lect. Notes Comput. Sci., vol. 5195,
pp. 320–326. Springer (2008). https://doi.org/10.1007/978-3-540-71070-7_28

49. Thiemann, P.: Intrinsically-typed mechanized semantics for session types. In: Proc.
21st Int. Symp. on Principles and Practice of Declarative Programming. PPDP ’19,
ACM, New York (2019). https://doi.org/10.1145/3354166.3354184

50. Tiu, A., Miller, D.: Proof search specifications of bisimulation and modal logics for
the π-calculus. ACM Trans. Comput. Logic 11(2) (Jan 2010). https://doi.org/
10.1145/1656242.1656248

51. Vasconcelos, V.T.: Fundamentals of session types. Inf. Comput. 217, 52–70 (2012).
https://doi.org/10.1016/j.ic.2012.05.002

52. Xia, L.Y., Zakowski, Y., He, P., Hur, C.K., Malecha, G., Pierce, B.C., Zdancewic,
S.: Interaction trees: representing recursive and impure programs in Coq. Proc.
ACM Program. Lang. 4 (dec 2019). https://doi.org/10.1145/3371119

53. Zalakain, U., Dardha, O.: π with leftovers: A mechanisation in Agda. In: Peters, K.,
Willemse, T.A.C. (eds.) FORTE ’21: Proc. Int. Conf. on Formal Techniques for Dis-
tributed Objects, Components, and Systems. Lect. Notes Comput. Sci., vol. 12719,
pp. 157–174. Springer (2021). https://doi.org/10.1007/978-3-030-78089-0_9

https://doi.org/10.4230/LIPIcs.ITP.2022.27
https://doi.org/10.4230/LIPIcs.ITP.2022.27
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1145/3622810
https://doi.org/10.1145/3622810
https://doi.org/10.1145/3290343
https://doi.org/10.1145/3290343
https://doi.org/10.1007/978-3-540-71070-7_28
https://doi.org/10.1007/978-3-540-71070-7_28
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1145/1656242.1656248
https://doi.org/10.1145/1656242.1656248
https://doi.org/10.1145/1656242.1656248
https://doi.org/10.1145/1656242.1656248
https://doi.org/10.1016/j.ic.2012.05.002
https://doi.org/10.1016/j.ic.2012.05.002
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1007/978-3-030-78089-0_9
https://doi.org/10.1007/978-3-030-78089-0_9

The Concurrent Calculi Formalisation Benchmark 11

A Challenges

A.1 Preliminaries

First, we list some common notions and conventions that we use in the challenges.
Since the calculi under study are somewhat different, each section lists the changes
that apply.

We assume the existence of some set of base values, represented by the symbols
a, b, . . ., the existence of some set of variables, represented by the symbols l,m, . . .,
and the existence of some set of names, represented by the symbols x, y,10 We
assume that all of these sets are infinite and that their elements can be compared
for equality. We assume that all of these sets are infinite and that their elements
can be compared for equality.

The syntax of processes includes: the process 0 or inaction, a process which
can do nothing. The process P | Q is the parallel composition of process P and
process Q. The two components can proceed independently of each other, or they
can interact via shared names.

For communication, processes include input and output, whose signature
signature depends on the calculus being value-passing or name-passing. We use
here the metavariables c, k to abstract over this choice — i.e. c may be either
a value or a variable or a name, whereas k may be a variable or a name. The
process x!c.P is an output, which can send c via x, then continue as P . The
process x?(k).P is an input, which can receive a c via x, then continue as P with
the received element substituted for k. The input operator thus binds k in P .

The process (νx) P is the restriction of the name x to P , binding x in P .
The process !P is the replication of the process P . It can be thought of as the

infinite composition P | P | · · ·. Replication makes it possible to express infinite
behaviours.

We use the notation fn(P) to denote the set of names that occur free, bn(P)
to denote the set of names that occur bound in P and fv(P) to denote the set of
variables that occur free in P . We use the notation bv(P) for the set of variables
that occur bound in P . We use the notation P{a/l} to denote the process P with
base value a substituted for variable l. Similarly, P{x/y} denotes the process
P with name x substituted for name y. We use the notation Pσ to denote the
process P with a finite number of arbitrary substitutions applied to it.

Two processes P and Q are α-convertible, written P =α Q, if Q can be
obtained from P by a finite number of substitutions of bound variables. As
a convention, we identify α-convertible processes and we assume that bound
names and bound variables of any processes are chosen to be different from the
names and variables that occur free in any other entities under consideration,
10 Unlike the standard π-calculus, we distinguish variables from names to better control

the expressiveness of the calculi under study, and the scope of the corresponding
challenges: the key distinction is that names are used as communication channels
(and can be sent and received in the scope extrusion challenge), whereas variables
are only bound by inputs and cannot be restricted, sent nor received, in the style of
value-passing CCS [40].

12 M. Carbone et al.

such as processes, substitutions, and sets of names or variables. This is justified
because any overlapping names and variables may be α-converted such that the
assumption is satisfied.

A context is obtained by taking a process and replacing a single occurrence
of 0 in it with the special hole symbol [·]. As a convention, we do not identify
α-convertible contexts. A context acts as a function between processes: a context
C can be applied to a process P , written C[P], by replacing the hole in C by P ,
thus obtaining another process. The replacement is literal, so names and variables
that are free in P can become bound in C[P].

We say that an equivalence relation S is a congruence if (P,Q) ∈ S implies
that for any context C, (C[P], C[Q]) ∈ S.

A.2 Challenge: Linearity and Behavioural Type Systems

This challenge formalises a proof that requires reasoning about the linearity of
channels. Linearity is the notion that a channel must be used exactly once by a
process. This is necessary to prove properties about session type systems, and
the key issue of this challenge is reasoning about the linearity of context splitting
operations. Linear reasoning is also necessary to formalise, e.g ., linear and affine
types for the π-calculus and cut elimination in linear logics.

The setting for this challenge is a small calculus with a session type system,
the syntax and semantics of which are given below. The calculus is a fragment of
the one presented in [51], formulated in the dual style of [5].

The main objective of this challenge is to prove type preservation (also
known as subject reduction), i.e., that well-typed processes can only transition
to processes which are also well-typed in the same context. The second objective
is to prove type safety, i.e., that well-typed processes are also well-formed in the
sense that they do not use endpoints in a non-dual way.

Syntax. The syntax is given by the grammar

v, w ::= a | l
P,Q ::= 0 | x!v.P | x?(l).P | (P | Q) | (νxy) P

where a value v, w, . . . is either a base value a or a variable l.
The output process x!v.P sends the value v via x and then continues as P .

The intention is that the value v must be a base value when it is actually sent, and
this is enforced in the semantics later on. The input process x?(l).P waits for a
base value from x and then continues as P with the received value substituted for
the variable l. The process (νxy) P represents a session with endpoints named x
and y which are bound in P . In P , the names x and y can be used to exchange
messages over the session (sending on x and receiving on y or vice versa). Note
that in this calculus channels cannot be sent in messages, therefore the topology
of the communication network described by a process cannot change. Also, there
is no recursion or replication in the syntax, hence no infinite behaviours can be
expressed. In particular, we only model linear (as opposed to shared) channels.

The Concurrent Calculi Formalisation Benchmark 13

Semantics. We describe the actions that the system can perform through a small
step operational semantics. As usual, we use a structural congruence relation that
equates processes that we deem to be indistinguishable. Structural congruence is
the smallest congruence relation that satisfies the following axioms:

Sc-Par-Comm

P | Q ≡ Q | P

Sc-Par-Assoc

(P | Q) | R ≡ P | (Q | R)

Sc-Par-Inact

P | 0 ≡ P

Sc-Res-Par
{x, y} ∩ fn(Q) = ∅

(νxy) P | Q ≡ (νxy) (P | Q)

Sc-Res-Inact

(νxy) 0 ≡ 0

Sc-Res

(νx1y1) (νx2y2) P ≡ (νx2y2) (νx1y1) P

The operational semantics are defined as the following relation on processes:

R-Com

(νxy) (x!a.P | y?(l).Q | R) → (νxy) (P | Q{a/l} | R)

R-Res
P → Q

(νxy) P → (νxy) Q

R-Par
P → Q

P | R → Q | R

R-Struct
P ≡ P ′ P ′ → Q′ Q ≡ Q′

P → Q

Note that reductions are allowed only for restricted pairs of session endpoints.
This makes it possible to formulate subject reduction so that the typing context
is exactly the same before and after each reduction. Note also that due to rule
R-Com, the process y?(l).P can receive any base value. Since the rule R-Com
only applies to sending base values, there is no way to send a variable or a name.

Session Types. Our process syntax allows us to write processes that are ill
formed in the sense that they either use the endpoints bound by a restriction to
communicate in a way that does not follow the intended duality, or attempt to send
something which is not a base value. As an example, the process (νxy) (x!a.0 |
y!a.0) attempts to send a base value on both x and y, whereas one of the names
should be used for receiving in order to guarantee progress. Another example
is the process (νxy) (x!l.0 | y?(l).0), which attempts to send a variable that is
not instantiated at the time of sending. To prevent these issues, we introduce a
session type system which rules out ill-formed processes.

Syntax. Our type system does not type processes directly, but instead focuses
on the channels used in the process. The syntax of session types S, T , unrestricted
typing contexts Γ and linear typing contexts ∆ is as follows:

S, T ::= end | base | ?.S | !.S
Γ ::= · | Γ, l
∆ ::= · | ∆,x : S

14 M. Carbone et al.

The end type end describes an endpoint over which no further interaction is
possible. The base type base describes base values. The input type ?.S describes
endpoints used for receiving a value and then according to S. The output type
!.S describes endpoints used for sending a value and then according to S.

Typing contexts gather type information about names and variables. Un-
restricted contexts are simply sets of names since we only have one base type.
Linear contexts associate a type to endpoints. We use the comma as split/union,
overloaded to singletons, and · as the empty context. We extend the Barendregt
convention [6] to contexts, so that all entries are distinct. Note that the order in
which information is added to a type context does not matter.

Since we need to determine whether endpoints are used in complementary
ways to determine whether processes are well formed, we need to formally define
the dual of a type as follows:

?.S = !.S !.S = ?.S end = end

Note that the dual function is partial since it is undefined for the base type.

Typing Rules. Our type system is aimed at maintaining two invariants:

1. No endpoint is used simultaneously by parallel processes;
2. The two endpoints of the same session have dual types.

The first invariant is maintained by linearly splitting type contexts when typ-
ing compositions of processes, the second by requiring duality when typing
restrictions.

We have two typing judgments: one for values, and one for processes. The
typing rules for values are:

T-Base

Γ ⊢v a : base

T-Var

Γ, l ⊢v l : base

The typing rules for processes are as follows:

T-Inact
end(∆)

Γ ;∆ ⊢ 0

T-Par
Γ ;∆1 ⊢ P Γ ;∆2 ⊢ Q

Γ ;∆1, ∆2 ⊢ P | Q

T-Res
Γ ; (∆,x : T, y : T) ⊢ P

Γ ;∆ ⊢ (νxy) P

T-Out
Γ ⊢v v : base Γ ;∆,x : T ⊢ P

Γ ; (∆,x : !.T) ⊢ x!v.P

T-IN
(Γ, l); (∆,x : T) ⊢ P

Γ ; (∆,x : ?.T) ⊢ x?(l).P

Note that we do not need a judgment for typing channels, since it is already
folded into the T-In and T-Out rules.

The Concurrent Calculi Formalisation Benchmark 15

Challenge. The objective of this challenge is to prove subject reduction and
type safety for our calculus with session types. We start with some lemmata:

Lemma 1 (Weakening).

1. If Γ ;∆ ⊢ P , then (Γ, l);∆ ⊢ P .
2. If Γ ;∆ ⊢ P , then Γ ; (∆,x : end) ⊢ P .

Proof. By induction on the given derivations.

Lemma 2 (Strengthening). If Γ ; (∆,x : T) ⊢ P and x ̸∈ fn(P), then
Γ ;∆ ⊢ P .

Proof. By induction on the derivation of Γ ; (∆,x : T) ⊢ P .

T-End Since end(∆), we can just reapply the rule without x : T .
T-Par In this case, we have that ∆,x : T = ∆0, ∆1. By cases on which context

x is in, we just apply the induction hypothesis on that context.
T-Res Without loss of generality, we assume that x /∈ {y, z}, for P = (νyz) P ′.

Since Γ ; (∆, y : T0, z : T0, x : T) ⊢ P ′, by induction hypothesis, we have
Γ ; (∆, y : T0, z : T0) ⊢ P ′. Applying again T-Res, we have Γ ;∆ ⊢ (νyz) P ′.

The remaining cases are analogous.

Lemma 3 (Substitution). If (Γ, l);∆ ⊢ P and Γ ⊢v a : base then Γ ;∆ ⊢
P{a/l}.

Proof. By induction on the derivation of (Γ, l);∆ ⊢ P .

T-End Immediate since end(∆).
T-Par For P = P0 | P1, we apply the induction hypothesis on the derivations

for P0 and P1.
T-Res Immediate on the premise of the rule.
T-Out Let P = x!v.P ′. We have that (Γ, l) ⊢v v : base. We must show

Γ ⊢v v : base to build the conclusion with the induction hypothesis and
T-Out. We proceed by cases on the structure of (Γ, l) ⊢v v : base.

The remaining cases are analogous.

To prove that congruence preserves typing we need to spell out in more detail
the former. First, we denote with · a≡ · the relation induced by the six axioms.

Lemma 4 (Preservation for
a≡). If P

a≡ Q, then Γ ;∆ ⊢ P iff Γ ;∆ ⊢ Q.

Proof. By case analysis on the Sc rule applied:

Par-Comm/Assoc By rearranging sub-derivations noting that order does not
matter for linear contexts.

Par-Inact Right-to-left by Lemma 2. Vice-versa, by picking T to be end and
applying Lemma 1, part 2.

16 M. Carbone et al.

Res-Par By case analysis on x : T being linear or end and applying weakening
and strengthening accordingly.

Res-Inact: By Lemma 1.
Res Noting that order does not matter.

Now, following Sangiorgi and Walker [45], we give rules for the compatible
equivalence relation induced by · a≡ ·, which we still write as · ≡ ·: namely, add
to reflexivity, symmetry and transitivity the following condition:

Cong
P

a≡ Q

C[P] ≡ C[Q]

Lemma 5 (Preservation for ≡). If P ≡ Q, then Γ ;∆ ⊢ P iff Γ ;∆ ⊢ Q.

Proof. By induction on the structure of the derivation of P ≡ Q, with an inner
induction of the structure of a process context.

Refl Immediate
Sym By IH.
Trans By two appeals to the IH.
Cong By induction on the structure of C. If the context is a hole, apply

Lemma 4. In the step case, apply the IH: for example if C has the form C ′ | R,
noting that (C ′ | R)[P] is equal to C ′[P] | R we have Γ ;∆ ⊢ (C ′ | R)[P] iff
Γ ;∆ ⊢ (C ′ | R)[Q] by rule T-Par and the IH.

Theorem 1 (Subject reduction). If Γ ;∆ ⊢ P and P → Q, then Γ ;∆ ⊢ Q.

Proof. By induction on the derivation of P → Q. The cases R-Par and R-Res
follow immediately by IH. Case R-Struct appeals twice to preservation of ≡
(Lemma 5) and to the IH. For R-Com, suppose that T-Res introduces in ∆ the
assumptions x : !.U, y : ?.U . Building the only derivation for the hypothesis, we
know that ∆ = ∆1, ∆2, ∆3 where Γ ;∆3 ⊢ R. We also have Γ ; (∆1, x : U) ⊢ P ,
D2 a proof of Γ, l; (∆2, y : U) ⊢ Q and V a proof of Γ ⊢v a : base. From D2 and
V we use the substitution lemma 3 to obtain Γ ;∆2, y : U ⊢ Q{a/l}. We then
conclude the proof with rules T-Par (twice) and T-Res.

To formulate safety, we need to formally define what we mean by well-formed
process. We say that a process P is prefixed at variable x if P ≡ x!v.P ′ or
P ≡ x?(l).P ′ for some P ′. A process P is then well formed if, for every P1,
P2, and R such that P ≡ (νx1y1) . . . (νxnyn) (P1 | P2 | R), with n ≥ 0, it
holds that, if P1 is prefixed at x1 and P2 is prefixed at y1 (or vice versa), then
P1 | P2 ≡ x1!a.P

′
1 | y1?(l).P ′

2, for some P ′
1 and P ′

2.
Note that well-formed processes do not necessarily reduce. For example, the

process
(νx1y1) (νx2y2) (x1!a.y2?(l).0 | y2!x2.y1?(l).0)

is well formed but also irreducible.

The Concurrent Calculi Formalisation Benchmark 17

Theorem 2 (Type safety). If Γ ; · ⊢ P , then P is well-formed.

Proof. In order to prove that P is well-formed, let us consider any process of
the form (νx1y1) . . . (νxnyn) (P1 | P2 | R) that is structurally congruent to P .
Clearly, by Lemma 5, well-typedness must be preserved by structural congruence.
Moreover, assume that P1 is prefixed at x1 and P2 is prefixed at y1 such that
P1 ≡ x1!v.P

′
1 (the opposite case proceeds similarly). We need to show that

P2 ≡ y1?(l).P
′
2. This can be easily done by contradiction. In fact, if P2 ≡ y1!v.P

′
2

then the typing rule for restriction would be violated since the type of x1 and y1
cannot be dual.

Corollary 1. If Γ ; · ⊢ P and P → Q, then Q is well formed.

A.3 Challenge: Name Passing and Scope Extrusion

This challenge formalises a proof that requires explicit scope extrusion. Scope
extrusion is the notion that a process can send restricted names to another
process, as long as the restriction can safely be “extruded” (i.e., expanded) to
include the receiving process. This, for instance, allows a process to set up a
private connection by sending a restricted name to another process, then using
this name for further communication. The key issue of this challenge is reasoning
about names that are “in the process” of being scope-extruded, which often
presents difficulties for the mechanisation of binders.

Reasoning about scope extrusion explicitly can sometimes be avoided by
introducing a structural congruence rule into the semantics, but doing this
means we lose information about the scope when reasoning about the semantics.
Explicitly reasoning about scope extrusion is necessary to describe, e.g ., runtime
monitors and compositions of systems.

The setting for this challenge is a “classic” untyped π-calculus, where (unlike
the calculi in the other challenges) names can be sent and received, and bound
by input constructs (similarly to variables in the other calculi). We define two
different semantics for our system: one that avoids explicit reasoning about scope
extrusion, and one that does not. The objective of this challenge is to prove that
the two semantics are equivalent up to structural congruence.

Syntax. The syntax of processes is given by:

P,Q ::= 0 | (P | Q) | x!y.P | x?(y).P | (νx) P

The process x!y.P is an output, which can send the name y via x, then
continue as P . The process x?(y).P is an input, which can receive a name via x,
then continue as P with the received name substituted for y. The input operator
thus binds the name y in P . Note that the scope of a restriction may change
when processes interact. Namely, a restricted name may be sent outside of its
scope. Note that there is no recursion or replication in the syntax, and thus no
infinite behaviours can be expressed. This simplifies the theory and is orthogonal
to the concept of scope extrusion.

18 M. Carbone et al.

Reduction Semantics. The first semantics is an operational reduction se-
mantics, which avoids reasoning explicitly about scope extrusion by way of a
structural congruence rule. Structural congruence is the smallest congruence
relation that satisfies the following axioms:

Sc-Par-Assoc

P | (Q | R) ≡ (P | Q) | R

Sc-Par-Comm

P | Q ≡ Q | P

Sc-Par-Inact

P | 0 ≡ P

Sc-Res-Par
x /∈ fn(Q)

(νx) P | Q ≡ (νx) (P | Q)

Sc-Res-Inact

(νx) 0 ≡ 0

Sc-Res

(νx) (νy) P ≡ (νy) (νx) P

The operational semantics is defined as the following relation on processes:

R-Com

x!y.P | x?(z).Q → P | Q{y/z}

R-Res
P → Q

(νx) P → (νx) Q

R-Par
P → Q

P | R → Q | R

R-Struct
P ≡ P ′ P ′ → Q′ Q ≡ Q′

P → Q

Note that there is no rule for inferring an action of an input or output process
except those that match the input/output capability. Note also that due to
rule R-Com, the process x?(z).P can receive any name. Finally, note that rule
R-Struct allows for applying the structural congruence both before and after the
reduction: this makes the reduction relation closed under structural congruence.

Transition System Semantics. The second semantics of the system describe
the actions that the system can perform by defining a labelled transition relation
on processes. The transitions are labelled by actions, the syntax of which is:

α ::= x!y | x?y | x!(y) | τ

The free output action x!y is sending the name y via x. The input action x?y
is receiving the name y via x. The bound output action x!(y) is sending a fresh
name y via x. The internal action τ is performing internal communication.

We extend the notion of free and bound occurrences with fn(α) to denote the
set of names that occur free in the action α and bn(α) to denote the set of names
that occur bound in the action α. In the free output action x!y and the input
action x?y, both x and y are free names. In the bound output action x!(y), x is
a free name, while y is a bound name. We also use the notation n(α) to denote
the union of fn(α) and bn(α), i.e. the set of all names that occur in the action α.

The Concurrent Calculi Formalisation Benchmark 19

The transition relation is then defined by the following rules:

Out

x!y.P
x!y−−→ P

In

x?(z).P
x?y−−→ P{y/z}

Par-L
P

α−→ P ′ bn(α) ∩ fn(Q) = ∅
P | Q α−→ P ′ | Q

Par-R
Q

α−→ Q′ bn(α) ∩ fn(P) = ∅
P | Q α−→ P | Q′

Comm-L

P
x!y−−→ P ′ Q

x?y−−→ Q′

P | Q τ−→ P ′ | Q′

Comm-R

P
x?y−−→ P ′ Q

x!y−−→ Q′

P | Q τ−→ P ′ | Q′

Close-L

P
x!(z)−−−→ P ′ Q

x?z−−→ Q′ z /∈ fn(Q)

P | Q τ−→ (νz) P ′ | Q′

Open

P
x!z−−→ P ′ z ̸= x

(νz) P
x!(z)−−−→ P ′

Close-R

P
x?z−−→ P ′ Q

x!(z)−−−→ Q′ z /∈ fn(P)

P | Q τ−→ (νz) P ′ | Q′

Res
P

α−→ P ′ z /∈ n(α)

(νz) P
α−→ (νz) P ′

Note that there is no rule for inferring transitions from 0, and that there is no
rule for inferring an action of an input or output process except those that match
the input/output capability. Note also that due to rule In, the process x?(z).P
can receive any name.

We keep the convention that bound names of any processes or actions are
chosen to be different from the names that occur free in any other entities under
consideration, such as processes, actions, substitutions, and sets of names. The
convention has one exception, namely that in the transition P

x!(z)−−−→ Q, the name
z (which occurs bound in P and the action x!(z)) may occur free in Q. Without
this exception it would be impossible to express scope extrusion.

Challenge.

Lemma 6. If P ≡ Q and P
α−→ P ′, then for some Q′ we have Q

α−→ Q′ and
P ′ ≡ Q′.

Proof (Sketch). First, show the special case when P can be rewritten to Q with
a single application of an axiom of the structural congruence to some subterm of
P. The proof is then by induction on the number of such steps.

For the proof of the challenge theorem, we introduce the notion of a normalized
derivation of a reduction P → Q, which is of the following form. The first
rule applied is R-Com. The derivation continues with an application of R-Par,

20 M. Carbone et al.

followed by zero or more applications of R-Res. The last rule is an application of
R-Struct.

Lemma 7. Every reduction has a normalized derivation.

Proof (Sketch). To obtain a normalized derivation from an arbitrary derivation we
will need to check that rules R-Com, R-Par and R-Res commute with R-Struct,
and that two applications of R-Struct can be combined into one.

Lemma 8. If P → Q, then there are x, y, z, z1, . . . , zn, R1, R2, and S such that

P ≡ (νz1) . . . (νzn) ((x!y.R1 | x?(z).R2) | S)
Q ≡ (νz1) . . . (νzn) ((R1 | R2{y/z}) | S)

Proof. Follows immediately from lemma 7 and the shape of a normalized deriva-
tion.

The objective of this challenge is to prove the following theorems, which
together show the equivalence between the reduction semantics and the transition
system semantics up to structural congruence. The first of the theorems involves
reasoning about scope extrusion more directly than the other, and if time does
not permit proving both of the theorems, theorem 3 should be proven first.

Theorem 3. P
τ−→ Q implies P → Q.

Proof (Sketch). The proof is by induction on the inference of P τ−→ Q using the
following lemmata:

1. if Q x!y−−→ Q′ then Q ≡ (νw1) . . . (νwn) (x!y.R | S) and Q′ ≡ (νw1) . . . (νwn) (R |
S) where x, y /∈ {w1, . . . , wn}.

2. if Q
x!(z)−−−→ Q′ then Q ≡ (νz) (νw1) . . . (νwn) (x!z.R | S) and Q′ ≡

(νw1) . . . (νwn) (R | S) where x /∈ {z, w1, . . . , wn}.
3. if Q x?y−−→ Q′ then Q ≡ (νw1) . . . (νwn) (x?(z).R | S) and Q′ ≡ (νw1) . . . (νwn) (R{y/z} |

S) where x /∈ {w1, . . . , wn}.

Theorem 4. P → Q implies the existence of a Q′ such that P
τ−→ Q′ and

Q ≡ Q′.

Proof. If P → Q, then by lemma 8, P ≡ P ′ with

P ′ = (νz1) . . . (νzn) ((x!y.R1 | x?(z).R2) | S)

and Q ≡ Q′ with

Q′ = (νz1) . . . (νzn) ((R1 | R2{y/z}) | S) .

We can easily check that P ′ τ−→ Q′ and so by lemma 6, P τ−→ Q′.

The Concurrent Calculi Formalisation Benchmark 21

A.4 Challenge: Coinduction and Infinite Processes

This challenge is about the mechanisation of proofs concerning processes with
infinite behaviours. This is usually connected to coinductive definitions where an
infinite structure is defined as the greatest fixed point of a recursive definition.
Coinduction is a technique for defining and proving properties of such infinite
structures.

For this challenge, we adopt a fragment of the untyped π-calculus that includes
process replication. The objective of this challenge is to draw a formal connection
between strong barbed congruence and strong barbed bisimilarity. The result
establishes that two processes are strong barbed congruent if the processes
obtained by applying a finite number of substitutions to them and composing
them in parallel with an arbitrary process are strongly barbed bisimilar. The key
issue of this challenge is the coinductive reasoning about the infinite behaviours
of the replication operator.

Syntax. The syntax of values and processes is given by:

v, w ::= a | l
P,Q ::= 0 | x!v.P | x?(l).P | (P | Q) | (νx) P | !P

The output process x!v.P sends the value v on channel x and continues as P .
The intention is that v must be a base value when it is actually sent, and this is
enforced in the semantics later on. The input process x?(l).P waits for a base
value from channel x and then continues as P with the received value substituted
for the variable l. Since replication allows for infinite copies of the process P ,
processes can dynamically create an infinite number of names during execution.

Semantics. We choose to give a labelled transition system semantics for this
challenge.

The transitions are labelled by actions, the syntax of which is as follows:

α ::= x!a | x?a | τ

The output action x!y is sending the base value a via x. The input action x?y
is receiving the base value y via x. The internal action τ is performing internal
communication. We use the notation n(α) to denote the set of names that occur
in the action α.

22 M. Carbone et al.

The transition relation is defined by the following rules:

Out

x!a.P
x!a−−→ P

In

x?(l).P
x?a−−→ P{a/l}

Par-L
P

α−→ P ′

P | Q α−→ P ′ | Q

Par-R
Q

α−→ Q′

P | Q α−→ P | Q′

Comm-L

P
x!a−−→ P ′ Q

x?a−−→ Q′

P | Q τ−→ P ′ | Q′

Comm-R

P
x?a−−→ P ′ Q

x!a−−→ Q′

P | Q τ−→ P ′ | Q′

Res
P

α−→ P ′ x /∈ n(α)

(νx) P
α−→ (νx) P ′

Rep
P

α−→ P ′

!P
α−→ P ′ | !P

Note that there is no rule for inferring transitions from 0, and that there is no
rule for inferring an action of an input or output process except those that match
the input/output capability. Note also that due to rule In, the process x?(l).P
can receive any base value. Since the rule Out only applies to base values, there
is no way to send a variable.

Strong Barbed Bisimilarity. Bisimilarity is a notion of equivalence for pro-
cesses and builds on a notion of observables, i.e., what we can externally observe
from the semantics of a process. If we allowed ourselves only to observe internal
transitions (i.e., observe that a process is internally performing a step of com-
putation) we would relate either too few processes (in the strong case where we
relate only processes with exactly the same number of internal transitions) or
every process (in the weak case where we relate processes with any amount of
internal transitions). As a result, we must allow ourselves to observe more than
just internal transitions, and we choose to describe a process’s observables as the
names it might use for sending and receiving.

To this end, we define the observability predicate P ↓µ as follows:

P ↓x? if P can perform an input action via x.
P ↓x! if P can perform an output action via x.

A symmetric relation R is a strong barbed bisimulation if (P,Q) ∈ R implies

P ↓µ implies Q ↓µ (1)

P
τ−→ P ′ implies Q

τ−→ Q′ and (P ′, Q′) ∈ R (2)

Two processes are said to be strong barbed bisimilar, written P
•∼ Q, if there

exists a strong barbed bisimulation R such that (P,Q) ∈ R. Note that strong
barbed bisimilarity •∼ is the largest strong barbed bisimulation. Also, since our
processes have potentially infinite behaviours, bisimilarity cannot be defined
inductively since it is the largest strong barbed bisimulation.

The Concurrent Calculi Formalisation Benchmark 23

Theorem 5. •∼ is an equivalence relation.

Proof. We prove the three properties separately:

– Reflexivity is straightforward: for any P , we need to show that P
•∼ P . In

order to do so, we choose the identity relation and prove that it is a strong
barbed bisimulation. Condition 1 follows trivially by definition. Condition 2
follows coinductively since we must always reach identical pairs.

– Symmetry follows immediately by definition.
– For transitivity, we need to prove that if P •∼ Q and Q

•∼ R then P
•∼ R. In

order to do so, we prove that the relation R = {(P,R) | ∃Q such that P
•∼

Q ∧Q
•∼ R} is a strong barbed bisimulation. Let us assume that (P,R) ∈ R.

Hence, there exists a Q such that P
•∼ Q and Q

•∼ R. Clearly, if P ↓µ then,
by P

•∼ Q, Q ↓µ. And, by Q
•∼ R, R ↓µ. Moreover, if P τ−→ P ′ there exists Q′

such that Q τ−→ Q′ and P ′ •∼ Q′. And also, R τ−→ R′ with Q′ •∼ R′. Finally, by
definition of R, (P ′, R′) ∈ R.

Unfortunately, strong barbed bisimilarity is not a good process equivalence
since it is not a congruence, hence it does not allow for substituting a process
with an equivalent one in any context. For instance, the processes x!a.y!b.0 and
x!a.0 are strong barbed bisimilar, i.e., x!a.y!b.0

•∼ x!a.0. This is because x!
is the only observable in both processes and they cannot perform a τ -action.
However, in the context C = [·] | x?(l).0, the relation no longer holds: in fact,
x!a.y!b.0 | x?(l).0 ̸ •∼ x!a.0 | x?(l).0 because the left process can perform a
τ -action such that y! becomes observable, whereas the right process cannot.

Strong Barbed Congruence. In order to detect cases like the one above, we
need to restrict strong barbed bisimilarity so that it becomes a congruence, i.e.,
we have to consider the environment in which processes may be placed.

We say that two processes P and Q are strong barbed congruent, written
P ≃c Q, if C[P]

•∼ C[Q] for every context C.

Lemma 9. ≃c is the largest congruence included in •∼.

Proof. We first prove that ≃c is indeed a congruence, i.e. it is an equivalence
relation that is preserved by all contexts. Proving that ≃c is an equivalence is
easy; to prove that ≃c is preserved by all contexts, we show that ∀C : P ≃c Q
implies C[P] ≃c C[Q], by structural induction on the context C.

To prove that ≃c is the largest congruence included in •∼, we show that for
any congruence S ⊆ •∼ we have S ⊆ ≃c. Take any P,Q such that P S Q (hence,
P

•∼ Q): since S is a congruence by hypothesis, this implies ∀C : C[P] S C[Q]
(hence, C[P]

•∼ C[Q]). Therefore, by the definition of ≃c, we have P ≃c Q, from
which we conclude S ⊆ ≃c.

24 M. Carbone et al.

Challenge. The objective of this challenge is to prove a theorem that shows
that making strong barbed bisimilarity sensitive to substitution and parallel
composition is enough to show strong barbed congruence. To prove the theorem,
we will use an up-to technique, utilizing the following definition and lemma. A
relation S is called a strong barbed bisimulation up to •∼ if, whenever (P,Q) ∈ S,
the following conditions hold:
1. P ↓µ if and only if Q ↓µ.
2. if P τ−→ P ′ then Q

τ−→ Q′ for some Q′ with P ′ •∼S •∼ Q′.
3. if Q τ−→ Q′ then P

τ−→ P ′ for some P ′ with P ′ •∼S •∼ Q′.

Lemma 10. If S is a strong barbed bisimulation up to •∼, (P,Q) ∈ S implies
P

•∼ Q.

Proof. We check that •∼S •∼ is a strong barbed bisimulation and is thus included
in •∼.

Theorem 6. P ≃c Q if, for any process R and substitution σ, Pσ | R •∼ Qσ | R.

Proof. Since ≃c is the largest congruence included in •∼, it suffices to show that
if Pσ | R •∼ Qσ | R for any R and σ, then C[P]σ | R •∼ C[Q]σ | R for any C, R
and σ. We proceed by induction on C.
C = x?(z).C ′ Let S = {(C[P]σ | R,C[Q]σ | R) | R and σ arbitrary} ∪ •∼. We

can easily check that S is a strong barbed bisimulation, noting that •∼ is
preserved by restriction and is contained in S.

C = C ′ | S Then by the induction hypothesis,

C[P]σ | R •∼ C ′[P]σ | (Sσ | R)
•∼ C ′[Q]σ | (Sσ | R)

•∼ C[Q]σ | R

for any R and σ.
C = (νz) C ′ Then by the induction hypothesis we have C ′[P]σ | R •∼ C ′[Q]σ | R

for any R and σ. Without loss of generality, we assume that z /∈ fn(R)∪ n(σ).
Then, using that •∼ is preserved by restriction, we have

C[P]σ | R •∼ (νz) (C ′[P]σ | R)
•∼ (νz) (C ′[Q]σ | R)

•∼ C[Q]σ | R
C = !C ′ Let S = {(C[P]σ | R,C[Q]σ | R) | R and σ arbitrary}. Using lemma 10,

it suffices to show that S is a strong barbed bisimulation up to •∼. To this
end, let

A = C ′[P]σ, A′ = C[P]σ

B = C ′[Q]σ, B′ = C[Q]σ,

noting that A′ = !A and B′ = !B.
Suppose R | A′ τ−→ S for some S. Then we can show by a case analysis on the
derivation of this transition that there exists a T such that R | (A | A)

τ−→ T
and S

•∼ T | A′. Using the induction hypothesis twice, we note that R | B′ •∼
R | (A | A) | B′. Since by rule Par-L, R | (A | A) | B′ τ−→ T | B′, there must
thus exist a U such that R | B′ τ−→ U , U •∼ T | B′ and S

•∼S •∼ U as required.
The proof for R | B′ τ−→ S is analogous.

The remaining cases are similar.

	The Concurrent Calculi Formalisation Benchmark

