Bisimulation proofs play a central role in programming languages in establishing rich properties such as contextual equivalence. They are also challenging to mechanize, since they require a combination of inductive and coinductive reasoning on open terms. In this paper we describe mechanizing the property that similarity in the call-by-name lambda calculus is a pre-congruence using Howe’s method in the Beluga formal reasoning system. The development relies on three key ingredients: 1) we give a higher-order abstract syntax (HOAS) encoding of lambda-terms together with their operational semantics as intrinsically typed terms, thereby avoiding not only the need to deal with binders, renaming and substitutions, but keeping all typing invariants implicit; 2) we take advantage of Beluga’s support for representing open terms using built-in contexts and simultaneous substitutions: this allows us to directly state central definitions such as open simulation without resorting to the usual inductive closure operation and to encode very elegantly notoriously painful proofs such as the substitutivity of the Howe relation; 3) we exploit the possibility of reasoning by coinduction in Beluga’s reasoning logic. The end result is succinct and elegant, thanks to the high-level abstractions and primitives Beluga provides. We believe that this mechanization is a significant example that illustrates Beluga’s strength at mechanizing challenging (co)inductive proofs using higher-order abstract syntax encodings.

1. Introduction

Logical frameworks such as LF (Harper et al., 1993) and λProlog (Miller and Nadathur, 2012) provide a meta-language for representing formal systems given via axioms and inference rules, factoring out common and recurring issues such as modelling variable bindings. They exploit an idea, dating back to Church, where we use a lambda calculus as the meta-language to uniformly encode variable binding in our formal system. This technique is now commonly known as higher-order abstract syntax (HOAS) or (in a slightly weaker setting) “lambda”-tree syntax (Miller and Palamidessi, 1999). In particular, we can encode uniformly variable binding operators by mapping them to the lambda binder of the meta-language. As a consequence variables in the object language (OL) are represented by variables in the meta-language (ML) and inherit thereby α-renaming and substitution from it. Moreover, this encoding technique scales to representing formal
systems that use hypothetical and parametric reasoning by providing generic support for managing hypotheses and the corresponding substitution lemmas. As users do not need to build up all this basic mathematical infrastructure, it is easier to prototype proof environments and mechanize formal systems. It can also have substantial benefits for proof checking and proof search.

While representing formal systems is a first step, the interesting question is how we can reason about HOAS representations inductively. Meta-languages such as LF or λ-Prolog that are used for representing OL are weak calculi and do not include case analysis, recursion or inductive definitions. This is in fact essential to achieve an adequate representation of the OL where each OL term uniquely corresponds to a given representation in the meta-language. So, how can we still reason about such representations?

One solution to this conundrum is the so-called “two-level” approach, as advocated by McDowell and Miller (1997), where we distinguish between a specification language and a reasoning logic above it, which supports at least some form of induction. The cited paper presented $FOLD^N$, which is basically a first order logic with definitions (fixed points) and natural number induction. Object logics are encoded in a specification language, which may vary and often is based on (possibly sub-structural) fragments of hereditary Harrop formulas. The method was tested on classical benchmarks such as subject reduction for PCF and its imperative variants.

Notably, one of Dale Miller’s motivating examples has been the (meta)theory of process calculi, in particular the π-calculus. This brought to the forefront the issue of representing and reasoning about infinite behaviour. In fact, McDowell et al. (1996) were concerned with the representation of transition systems and their bisimulation: in agreement with Milner’s original presentation in *A Calculus of Communicating Systems*, bisimulation was captured inductively by computing the greatest fixed point starting from the universal relation and closing downwards by intersection. This is doable, but notoriously awkward to work with and in fact Milner swiftly adopted the notion of coinduction in his subsequent *Communication and Concurrency*.

In the late 1990, coinduction was available in general proof assistants such as Isabelle/HOL and Coq, the first by encoding the standard Tarski’s fixed point theorem in higher order logic, the latter by guarded induction; several reasonably large case studies were carried out, not without some difficulties (Ambler and Crole, 1999; Honsell et al., 2001; Hirschkoff, 1997). These case studies further demonstrated the challenges in modelling variable bindings and building up such an infrastructure, as lambda-tree syntax is fundamentally incompatible with the foundations of these proof systems. It turns out instead that it is quite natural to step from $FOLD^N$ to support (co)inductive reasoning; Momigliano and Tiu (2003) adopted the view of definitions as least and greatest fixed points adding rules for fixed point induction. This was later shown to be consistent in (Tiu and Momigliano, 2012). With the orthogonal ingredient of ∇-quantifier to abstract over variable names (Miller and Tiu, 2005), this line of research culminated in the *Abella* proof assistant (Baelde et al., 2014), which until recently was, in fact, the only proof assistant supporting natively both HOAS and coinduction, as exemplified in some non-insignificant case studies (Tiu and Miller, 2010; Momigliano, 2012).
The other main player in HOAS logical frameworks is LF (Harper et al., 1993): Pfenning advocated using it as a meta-logical framework by representing inductive proofs as relations. To ensure that a relation describes a valid inductive proof, external checks guarantee that the implemented relation constitutes a total function, i.e., covers all cases and all appeals to the induction hypothesis are well-founded. This lead to the proof environment Twelf (Pfenning and Schürmann, 1999), which has been used widely, see for a major case study (Lee et al., 2007). However, Twelf did not seem to lend itself to coinductive reasoning.

To address these and other shortcomings, Pientka (2008) designed a reasoning logic on top of LF that allows us to directly analyze and manipulate LF objects. Beluga (Pientka and Dunfield, 2010) implements this idea. To model derivation trees that depend on assumptions, LF objects are paired with their surrounding context (Nanevski et al., 2008; Pientka, 2008; Pientka and Dunfield, 2008). Inductive proofs are then implemented as recursive functions that directly pattern match on contextual LF objects. Beluga provides a proof language that makes explicit context reasoning via built-in contexts and simultaneous substitutions together with their equational theory. Moreover, it supports inductive and stratified definitions in addition to higher-order functions (Cave and Pientka, 2012; Pientka and Cave, 2015; Jacob-Rao et al., 2018), thereby going substantially beyond the expressive power of Twelf.

One might say that the proof and the type-theoretic approaches are converging towards a core reasoning logic that supports least and greatest fixed points and equality within first-order logic. This might be more obvious in the inductive case where we are more familiar with the computational interpretation of proofs: we readily interpret pattern matching in a program as case analysis in a proof and accept that recursive calls on structurally smaller objects correspond to well-founded appeals to the induction hypothesis. Coinductive reasoning in type theory is less well understood. In fact, guarded co-recursion in Coq, for example, does not preserve types (Giménez, 1996; Oury, 2008). To overcome these and other difficulties, Pientka and collaborators (Abel et al., 2013; Abel and Pientka, 2016; Thibodeau et al., 2016) proposed in prior work a novel computational interpretation of coinductive proofs. While finite (inductive) data is defined using constructors and analyzed via pattern matching, we define infinite (coinductive) data by the observations that we can make about it. We can reason about such observations using copattern matching. A function about finite data represents an inductive proof, if we cover all cases and all recursive calls are on structurally smaller objects. This guarantees that the function is total, that is, defined on all inputs and terminating. Dually, a total function about infinite data corresponds to a coinductive proof, if we cover all possible observations on the output and all recursive calls are guarded by an observation. This guarantees that the function is defined on all possible outputs and remains productive, as we only proceed to evaluate the co-recursive function when we apply it to an observation.

As a contribution to a better understanding of the relationship between the logical and computational interpretation of coinductive proofs, the present paper reappraises the proof that similarity in the call-by-name lambda calculus with lists is a pre-congruence using Howe’s method (Howe, 1996). This is a challenging proof since it requires a com-
bination of inductive and coinductive reasoning on open terms. We mechanize this proof in Beluga, relying on three key ingredients:

1. we give a HOAS encoding of lambda-terms together with their operational semantics as \textit{intrinsically typed} terms, thereby avoiding not only the need to deal with binders, renaming and substitutions, but keeping all typing invariants implicit;
2. we take advantage of Beluga’s support for representing open terms using built-in contexts and simultaneous substitutions: this allows us to directly state a notion such as open simulation without resorting to the usual inductive closure operation and to encode neatly notoriously painful proofs such as the substitutivity of the Howe relation;
3. we exploit the possibility of reasoning by coinduction in Beluga’s reasoning logic.

The end result is, in our opinion, succinct and elegant, thanks to the high-level abstractions and primitives Beluga provides.

The paper starts in Section 2 with a summary description of Howe’s method and discusses the challenges that it poses to its mechanization. The latter is detailed in Section 3, together with a proof of adequacy of our encoding of similarity (Section 3.4) and a example derivation of two terms being similar (Section 3.6). We review related work in Section 4 and conclude in Section 5. Appendix A contains a brief overview of the relevalt part of Beluga’s syntax. The entire formal development can be retrieved from https://github.com/Beluga-lang/Beluga/tree/master/examples/codatatypes/howes-method.

2. A summary of Howe’s method

First let us fix our programming languages as the simply-typed λ-calculus with recursion over (lazy) lists, which we call PCFL following Pitts (1997). Its types consist of the unit type (written as \top), function types, and lists (written as $\text{list}(\tau)$).

\begin{align*}
\text{Types} & \quad \tau & ::= & \top \mid \tau \to \tau \mid \text{list}(\tau) \\
\text{Terms} & \quad m, n, p, q & ::= & x \mid \text{lam} x. p \mid m_1 \ m_2 \mid \text{fix} \ 1.2. \ m \mid \langle \rangle \\
& & & \mid \text{nil} \mid \text{cons} \ m \ h \ \ m \ t \mid \text{case} \ m \ \text{of} \ \{ \text{nil} \Rightarrow n \mid \text{cons} \ h \ d \ t \Rightarrow p \}
\end{align*}

\begin{align*}
\text{Values} & \quad v & ::= & \langle \rangle \mid \text{lam} x. p \mid \text{nil} \mid \text{cons} \ m \ h \ m \ t
\end{align*}

The typing rules for PCFL and the big step lazy operational semantics denoted by $m \Downarrow v$ are standard and we omit them here. In particular, lists are only evaluated lazily, as the definition of values shows. The interested reader can skip ahead to their encoding in LF in the Section 3.1 or consult Pitts (1997).

2.1. Proving bisimilarity a congruence using Howe’s method

Suppose we want to say when two programs (two closed terms) have the same behavior. A well known characterization is Morris-style contextual equivalence: two expressions of a programming language are contextually equivalent if occurrences of the first expression in any program can be replaced by the second without affecting the \textit{observable} results of executing the program.
While this notion of program equivalence is intuitive, it is indeed difficult to reason about it, mainly due to the quantification on every possible context.† Many techniques have been proposed through the years, ranging from domain theory (Abramsky, 1991), game semantics (Ghica and McCusker, 2000) to logical relations (Ahmed, 2006). The idea of bisimilarity has usefully been adapted from concurrency theory to provide yet another characterization of contextual equivalence. Bisimilarity is, similarly to contextual equivalence, parametrized by the notion of observable we select; roughly, m and n are bisimilar if whenever m evaluates to an observable so does n, and all the subprograms of those are also bisimilar. In the case of applicative bisimilarity, evaluation at function type is pushed until values are reached.

To simplify the presentation, we will concentrate on the notion of similarity, from which bisimilarity can be obtained by symmetry, that is taking the conjunction of similarity and its inverse; this is possible thanks to determinism of evaluation.

Definition 1 (Applicative simulation). An applicative simulation is a family of typed relations R_τ on closed terms satisfying the following conditions:

- if $m \mathcal{R}_{\top} n$ then $m \downarrow ()$ entails $n \downarrow ()$.
- if $m \mathcal{R}_{\text{list}(\tau)} n$ then $m \downarrow \text{nil}$ entails $n \downarrow \text{nil}$.
- if $m \mathcal{R}_{\text{list}(\tau)} n$ then $m \downarrow \text{cons } m_h m_t$ entails that there are terms m'_h and m'_t such that $n \downarrow \text{cons } m'_h m'_t$ for which $m_h \mathcal{R}_\tau m'_h$ and $m_t \mathcal{R}_{\text{list}(\tau)} m'_t$.
- if $m \mathcal{R}_{\tau \to \tau'} n$ then $m \downarrow \text{lam}_x m'$ entails that there is a term n' such that $n \downarrow \text{lam}_y n'$ for which $m'[r/x] \mathcal{R}_{\tau'} n'[r/y]$ for every term r of type τ.

We can make sense of the non-well-founded nature of the last two conditions by noting that there are non-empty simulations, e.g. the identity relation and that the union of two applicative simulations is still a simulation. Hence there exists the largest one, which we call applicative similarity. This relation can also be characterized using the Knaster-Tarski fixed point theorem, as the greatest fixed point of an appropriate endofunction Φ on families of typed relations. For a detailed explanation we refer again to Pitts (1997), and we just mention that the definition of the function follows the simulation relation, and has, for example at $\tau \to \tau'$, $m \Phi(R_{\tau \to \tau'}) n$ just in case whenever $m \downarrow \text{lam}_x m'$ for any m', there exists a term n' such that $n \downarrow \text{lam}_y n'$ and for every r of type τ, $m'[r/x]$ is $R_{\tau'}$-related to $n'[r/y]$; hence, similarity is the set coinductively defined by Φ, a relation we write as $m \bowtie_\tau n$. This yields a co-induction principle that we describe first in its

† This notion can and has been simplified, starting from Milner’s context lemma (Milner, 1977) and going through the CIU theorem (Mason and Talcott, 1991). Some mechanizations are also available (Ambler and Crole, 1999; Ford and Mason, 2003; McLaughlin et al., 2018), as we discuss further in Section 4.
generality and below we show it instantiated to applicative similarity.

$$\exists S \text{ s.t. } a \in S \quad S \subseteq \Phi(S) \quad CI$$

$$\exists S_\tau \text{ s.t. } m S_\tau n \quad S_\tau \text{ is an applicative simulation} \quad CI - \preceq$$

It is not difficult to show that similarity is a pre-order and we detail the proof of reflexivity using rule $CI - \preceq$ to highlight the similarities with the type-theoretic definition based instead on the notion of observation, on which our mechanization relies.

Theorem 1 (Reflexivity of applicative similarity). $\forall \tau, m \preceq_\tau m.$

Proof. To show the result we need to provide an appropriate simulation S and check the simulation conditions. Just choose S_τ to be the family $\{(m, m) | \cdot \vdash m : \tau\}$ where we use the judgment $m : \tau$ to say that term m has type σ.

We then consider each case in the applicative simulation definition.

— if $m S_\tau m$, then $m \downarrow \langle \rangle$ entails $m \downarrow \langle \rangle$: immediate;

— if $m S_{\text{list}()} m$, then $m \downarrow \text{nil}$ entails $m \downarrow \text{nil}$: immediate;

— assume $m S_{\text{list}()} m$ and $m \downarrow \text{cons} m_h m_t$; pick m'_h, m'_t to be m_h, m_t and by the definition of the simulation, it holds that $m_h S_\tau m_h$ and $m_t S_{\text{list}()} m_t$;

— assume $m S_{\tau \rightarrow \tau'} m$ and $m \downarrow \text{lam} x. m'$; again by picking m' for n' and by the definition of the simulation it is obvious that for every $r: \tau$, $[r/x]m' S_{\tau'} [r/x]m'$.

\[\square \]

In many cases, we do not have to look much further beyond the statement of the theorem to come up with an appropriate simulation, i.e. we can read off the definition of simulation from it — and this is indeed the case for all the coinductive proofs in the following development. However, to show the equivalence of specific programs we may have to come up with a complex bisimulation, possibly defined inductively and/or “up to”. This phenomenon is well-known in inductive theorem proving, where sometimes the induction hypothesis coincides with the statement of the theorem, but in other cases it needs to be generalized in an appropriate lemma. The fixed point rules conflate those two aspects, generalization and lemma application, in one go. With an abuse of language, we will say that we prove a statement by coinduction and say that we appeal to the use of the “coinductive hypothesis” when the simulation corresponds to the statement of the theorem.

When dealing with program equivalence, *equational* (in addition to coinductive) reasoning would be helpful and this is why it is crucial to establish bisimilarity to be a *congruence*, i.e. a relation respecting the way terms are constructed. Since in this paper we restrict ourselves to similarity, we target *pre*-congruence. Given the presence of variable-binding operators, we need to consider relations over *open* terms, that is families of relations over terms indexed by a typing context Γ in addition to a type τ, which we write as $\Gamma \vdash m \mathcal{R}_\tau n$.
Definition 2 (Compatible relation). A relation \(\Gamma \vdash m \rightarrow_R n \) is compatible when:

\begin{enumerate}
\item[(C0)] \(\Gamma \vdash \emptyset \rightarrow_R \emptyset \);
\item[(C1)] \(\Gamma, x:\tau \vdash x : \rightarrow_R \tau \);
\item[(C2)] \(\Gamma, x:\tau \vdash m \rightarrow_R n \) entails \(\Gamma \vdash (\lambda x.m) \rightarrow_R (\lambda x.n) \);
\item[(C3)] \(\Gamma \vdash m_1 \rightarrow_{R_1} n_1 \) and \(\Gamma \vdash m_2 \rightarrow_{R_2} n_2 \) entail \(\Gamma \vdash (m_1 \, m_2) \rightarrow_{R_1 \cup R_2} (n_1 \, n_2) \);
\item[(C4)] \(\Gamma, x:\tau \vdash m \rightarrow_{R_1} n \) entails \(\Gamma \vdash (fix \, x \, n) \rightarrow_{R_1} (fix \, x \, n) \);
\item[(C5a)] \(\Gamma \vdash \text{nil} \rightarrow_{\text{list}(\tau)} \text{nil} \);
\item[(C5b)] \(\Gamma \vdash n_{\text{h}} \rightarrow_{\text{list}(\tau)} n_{\text{h}} \) and \(\Gamma \vdash m_{\text{t}} \rightarrow_{\text{list}(\tau)} m_{\text{t}} \) entail \(\Gamma \vdash (\text{cons} \, m_{\text{t}} \, n_{\text{h}}) \rightarrow_{\text{list}(\tau)} (\text{cons} \, n_{\text{h}} \, n_{\text{t}}) \);
\item[(C6)] \(\Gamma \vdash m_n \rightarrow_{\text{list}(\tau)} m_{n+1} \), \(\Gamma \vdash n_1 \rightarrow_{R_1} n_2 \) and \(\Gamma, h:\tau, t:\text{list}(\tau) \vdash p_1 \rightarrow_{R_1} p_2 \) entail \(\Gamma \vdash \text{case} \, m_n \, \{ \text{nil} \Rightarrow n_1 \mid \text{cons} \, h \, t \Rightarrow p_1 \} \rightarrow_{R_1} \text{list}(\tau) \, (\text{case} \, m_{n+1} \, \{ \text{nil} \Rightarrow n_2 \mid \text{cons} \, h \, t \Rightarrow p_2 \}) \).
\end{enumerate}

Definition 3 (Pre-congruence). A pre-congruence is a compatible transitive relation.

By the very definition of simulation at arrow type it is clear that a key property for our development is for a relation to be preserved by pairwise substitution:

\[\Gamma, y:\tau \vdash m_1 \rightarrow_R m_2 \quad \text{and} \quad \Gamma \vdash n_1 \rightarrow_R n_2 \quad \Rightarrow \quad \Gamma \vdash [n_1/y]m_1 \rightarrow_R [n_2/y]m_2. \]

We generalize this property here using simultaneous substitutions, streamlining our formal development, see Section 3.7. Fig. 1 gives rules for well-typed simultaneous substitutions \(\Psi \vdash \sigma : \Gamma \), where \(\sigma \) replaces variables in \(\Gamma \) with terms typable in \(\Psi \); then, we state when two such substitutions are \(\rightarrow_R \)-related:

Well-Typed Simultaneous Substitutions: \(\Psi \vdash \sigma : \Gamma \)

\[
\frac{
\Psi \vdash \cdot : \Gamma \quad \Psi \vdash m : \tau
}{
\Psi \vdash \sigma, m / x : \Gamma, x : \tau
}.
\]

Related Simultaneous Substitutions: \(\Psi \vdash \sigma_1 \rightarrow_R \sigma_2 \)

\[
\frac{
\Psi \vdash \cdot \rightarrow_R \Gamma \quad \Psi \vdash m \rightarrow_R n
}{
\Psi \vdash \sigma_1, m / x : \Gamma, x : \tau \rightarrow_R (\sigma_2, n / x)
}.
\]

Fig. 1. (Related) simultaneous substitutions

Definition 4 (Substitutive relation). A relation is substitutive (Sub) iff \(\Gamma \vdash m_1 \rightarrow_R m_2 \) and \(\Psi \vdash \sigma_1 \rightarrow_R \sigma_2 \) entails \(\Psi \vdash [\sigma_1]m_1 \rightarrow_R [\sigma_2]m_2 \).

Some other properties are admissible:

Lemma 2 (Elementary admissible properties).

\begin{enumerate}
\item[(Ref)] If a relation is compatible, then it is reflexive; further, if \(\Gamma \vdash m \rightarrow_R m \), then \(\Psi \vdash \sigma : \Gamma \rightarrow_R \sigma \).
\item[(Cus)] If \(\rightarrow_R \) is substitutive and reflexive, then it is also closed under substitution:

\[\Gamma \vdash m_1 \rightarrow_R m_2 \quad \text{and} \quad \Psi \vdash \sigma : \Gamma \quad \Rightarrow \quad \Gamma' \vdash m \rightarrow_R m \]

following from Cus taking \(\sigma \) to be the identity substitution for \(\Gamma' \).
\end{enumerate}
The definition of similarity applies only to closed terms. It is therefore customary to extend similarity to open terms via substitution. We do this using grounding substitutions:

Definition 5 (Open similarity). \(\Gamma \vdash m \preceq^\sigma m' \) iff \([\sigma]m \preceq^\tau [\sigma]m'\) for any \(\cdot \vdash \sigma : \Gamma \).

Now, it is immediate that open similarity is a pre-order and hence (C1) and transitivity hold. Further, (C2) also holds, since similarity satisfies

\[
\text{lam } x.\ m \preceq^\tau \text{lam } x.\ n \text{ iff for all } x:\tau, \ [p/x]m \preceq^\tau [p/x]n
\]

However, a direct attempt to prove pre-congruence of open similarity breaks down when dealing with (C3) and (C6). Moreover, while it follows simply by construction that open similarity is closed under substitution, it is not obvious that it is substitutive.

Howe’s idea (Howe, 1996) was to introduce a candidate relation \(\preceq^H_\tau \) (see Fig. 2), which contains (open) similarity and can be shown to be almost a substitutive pre-congruence, and then to prove that it does coincide with similarity.

The informal proof consists of several lemmata:

2. The Howe relation is reflexive. Induction on typing, using reflexivity of open similarity.
3. Compatibility: (C0)—(C6) hold, an easy consequence of (2).
4. Open similarity is contained in Howe, which follows immediately from (1) and (2).
5. The Howe relation is substitutive, see Lemma 6.
6. The Howe relation “mimics” the simulation conditions:
 - (6.1) If \(\langle \rangle \preceq^H_\tau n \), then \(n \vdash \langle \rangle \).
Downward closure: if $p \models \Gamma$ for the base case and closure under substitution for the step.

Theorem 3. Open similarity is a pre-congruence.

Corollary 1. Open similarity is a pre-congruence.

2.2. On the role of substitutions in Howe’s method

Substitutions play a central role in the overall proof that similarity is a pre-congruence. In the informal proof, we silently exploit equational laws about substitution; however, they can cause significant trouble during mechanization. We summarize the definition of substitution for our term language together with its equational theory in Fig. 3. To illustrate how we rely on these substitution properties in proofs, we show here in more detail the proof of substitutivity and pay particular attention to the properties in Fig. 3. Recall that the definition of $\Psi \vdash \sigma_1 \leq^H \sigma_2$ is just an instance of the definition of related simultaneous substitutions.

Lemma 6 (Substitutivity of the Howe relation). Suppose we have $\Gamma \vdash m_1 \leq^H m_2$ and $\Psi \vdash \sigma_1 \leq^H \sigma_2$; then $\Psi \vdash [\sigma_1]m_1 \leq^H [\sigma_2]m_2$.

Proof. By induction on the derivations of $\Gamma \vdash m_1 \leq^H m_2$.

- $\Psi \vdash [\sigma_1]m \leq^H [\sigma_2]m'$ by IH on first subderivation
- $\Psi \vdash [\sigma_1]n \leq^H [\sigma_2]n'$ by IH on second subderivation
- $\Psi \vdash [\sigma_2](m' n') \leq^\circ [\sigma_2]r$ by cus on third subderivation
- $[\sigma_2](m' n') \equiv [\sigma_2]m' [\sigma_2]n'$ by def. of substitution (see Fig. 3)
- $\Psi \vdash [\sigma_1]m [\sigma_1]n \leq^H [\sigma_2]r$ by rule $happ$
- $\Psi \vdash [\sigma_1](m n) \leq^H [\sigma_2]r$ by above line
Equational Theory of Simultaneous Substitution

For $\Gamma \vdash \sigma : \Gamma$ and $\Gamma \vdash m : \tau$, we define $[\sigma]m$ as follows

$[\sigma]x = \sigma(x)$

$[\sigma](\lambda x. m) = \lambda x. [\sigma.x/x]m$

$[\sigma](m\ n) = [\sigma]m\ [\sigma]n$

$[\sigma](\langle \rangle) = \langle \rangle$

$[\sigma](\nil) = \nil$

$[\sigma](\cons\ m\ n) = \cons\ [\sigma]m\ [\sigma]n$

$[\sigma](\fix\ x.\ m) = \fix\ x.\ [\sigma.x/x]m$

$[\sigma](\icase\ m\ of\ \{\nil\Rightarrow\ n\ |\ \cons\ h_d\ t_i\Rightarrow\ p\})$

\[
= \icase\ [\sigma]m\ of\ \{\nil\Rightarrow\ [\sigma]n\ |\ \cons\ h_d\ t_i\Rightarrow\ [\sigma, h/h, t/t]p\}
\]

$[\sigma_2](\cdot) = \cdot$

$[\sigma_2](\sigma_1, m/x) = [\sigma_2]\sigma_1, \ [\sigma_2]m/x$

Lemma 4 (Substitution lemma and weakening property).

1. If $\Gamma' \vdash \sigma : \Gamma$ and $\Gamma \vdash m : \tau$ then $\Gamma' \vdash [\sigma]m : \tau$.

2. If $\Gamma' \vdash \sigma : \Gamma$ then $\Gamma', y : \tau \vdash \sigma : \Gamma$.

Lemma 5 (Substitution properties).

1. $[\sigma, n/x]m = [n/x][[\sigma.x/x]m]$

2. $[\sigma', n/x]\sigma = [n/x][[\sigma'.x/x]\sigma]$

3. $[\sigma_2][[\sigma_1]m_1] = [[\sigma_2]\sigma_1]m$

4. $[\sigma_2][[\sigma_1]\sigma] = [[\sigma_2]\sigma_1]\sigma$

5. Let $\id = x_1/x_1, \ldots, x_n/x_n$ be the identity substitutions for $\Gamma = x_1 : \tau_1, \ldots, x_n : \tau_n$, then $[\id]m = m$ and $[\id]\sigma = \sigma$. Moreover, $[\sigma]\id = \sigma$. A special case is when $\Gamma = \cdot$. In this case we have $\id = \cdot$. Moreover, $\cdot m = m$, $\cdot \sigma = \sigma$, and $[\cdot] = \cdot$.

Fig. 3. Properties of simultaneous substitutions

\[
\begin{array}{c}
\Psi \vdash \sigma_1 \leq^H \sigma_2 \\
\Psi, x : \tau \vdash \sigma_1 \leq^H \sigma_2 \\
[\sigma]x \leq_{\Psi} [\sigma]x \text{ for any } \sigma \text{ where } \cdot \vdash \Psi : x : \tau \\
\Psi, x : \tau \vdash x \leq^0 x \\
\Psi, x : \tau \vdash x \leq^*_\tau x \\
\Psi, x : \tau \vdash \sigma_1, x/x \leq^H_{\Gamma, x, \tau} \sigma_2, x/x \\
\Psi, x : \tau \vdash [\sigma_1, x/x]m \leq^H_{\Gamma, \tau} [\sigma_2, x/x]m' \\
\Psi \vdash [\sigma_2](\lambda m.\ m') \leq^0_{\tau \rightarrow \tau'} [\sigma_2]r \\
[\sigma_2](\lambda m.\ m') = \lambda m.\ [\sigma_2, x/x]m' \\
\Psi \vdash (\lambda m.\ [\sigma_1, x/x]m) \leq^H_{\tau \rightarrow \tau'} [\sigma_2]r \\
[\sigma_1](\lambda m.\ m) = \lambda m.\ [\sigma_1, x/x]m \\
\end{array}
\]

by assumption

by weakening (Lemma 4.2)

by reflexivity of similarity (Theorem 1)

by def. of open similarity

by rule hvar

by def. of Howe related substitutions

by IH on first subderivation

by cus on second subderivation

by def. of substitution (see Fig. 3)

by rule $\lambda m. a$

by def. of substitution (see Fig. 3)
Case-Study for Coinductive Proofs

\(\Psi \vdash [\sigma_1](\lambda x. m) \equiv^H_{\tau \rightarrow \tau'} [\sigma_2]r \)

by above line

The other cases are analogous.

3. Mechanizing Howe’s method in Beluga

We discuss in this Section the proof that similarity in PCFL is a pre-congruence using Howe’s method in Beluga.

Beluga is a programming environment that supports both specifying formal systems and reasoning about them. To specify formal systems such as PCFL we use the logical framework LF. This allows us to take advantage of higher-order abstract syntax. A key challenge when reasoning about LF objects is that we must consider potentially open objects. In Beluga, this need is met by viewing all LF objects together with the contexts in which they are meaningful (Nanevski et al., 2008) as contextual LF objects and by abstracting not only over LF objects but also over contexts. We then view contextual objects and contexts as a particular index domain about which we can reason using a first-order logic with (co)induction principles on our index domain and built-in equality on index objects. Under the Curry-Howard isomorphism this logic corresponds to a functional language with indexed (co)inductive types that supports (co)pattern matching.

Meta-theoretic proofs about formal systems are implemented as (co)recursive functions in Beluga. We summarize in Appendix A the source level syntax of Beluga, where we concentrate on the parts that are relevant for our development. It is by no means a complete description, but it may serve as a useful high-level introduction to understanding Beluga programs. For a more formal introduction to the theoretical foundations, we refer the reader to (Cave and Pientka, 2012; Thibodeau et al., 2016).

3.1. Encoding syntax in LF

We adopt the usual HOAS encoding for binding operators in the object language, and make essential use of LF’s dependent types (see Fig. 4). In particular the type family \(\text{term} \) encodes intrinsically-typed terms. This will make our overall mechanization more compact, as all terms are well-typed by construction which is enforced by Beluga’s type checker.

Variables such as \(T \) and \(S \) that are used in declaring the type of the LF constants are abstracted over at the front of the type of the constructor and we rely on type reconstruction to infer their types (Pientka, 2013). These variables are treated as implicit and we subsequently omit passing them when forming \(\text{term} \) objects.

3.2. Encoding the operational semantics with indexed inductive types

To illustrate how we can use inductive types in Beluga, we encode the value and evaluation judgment as computation-level type families indexed by closed well-typed terms. This is demonstrably equivalent to encoding the same judgments at the LF level.

How do we enforce that a LF object is closed? This is accomplished by a contextual type \([\vdash \text{term} T] \), where the context that appears to the left hand side of the turnstile is
\[\text{LF } \mathtt{tp} : \text{type} = \\
| \mathtt{top} : \mathtt{tp} \\
| \mathtt{arr} : \mathtt{tp} \to \mathtt{tp} \to \mathtt{tp} \\
| \mathtt{list} : \mathtt{tp} \to \mathtt{tp}; \\
\]
\[\text{LF } \mathtt{term} : \mathtt{tp} \to \text{type} = \\
| \mathtt{app} : \mathtt{term} (\mathtt{arr} \ S \ T) \to \mathtt{term} \ S \to \mathtt{term} \ T \\
| \mathtt{lam} : (\mathtt{term} \ S \to \mathtt{term} \ T) \to \mathtt{term} (\mathtt{arr} \ S \ T) \\
| \mathtt{fix} : (\mathtt{term} \ T \to \mathtt{term} \ T) \to \mathtt{term} T \\
| \mathtt{unit} : \mathtt{term} \top \\
| \mathtt{nil} : \mathtt{term} (\mathtt{list} \ T) \\
| \mathtt{cons} : \mathtt{term} \ T \to \mathtt{term} (\mathtt{list} \ T) \to \mathtt{term} (\mathtt{list} \ T) \\
| \mathtt{lcase} : \mathtt{term} (\mathtt{list} \ S) \to \mathtt{term} \ T \to (\mathtt{term} \ S \to \mathtt{term} (\mathtt{list} \ S) \to \mathtt{term} \ T) \\
\]

Fig. 4. LF definition of intrinsically typed terms

\[\text{inductive Value} : \left[\mathtt{term} \ T\right] \to \text{ctype} = \\
| \text{Val}_{\text{lam}} : \text{Value} \left[\text{lam} \ \lambda x.N\right] \\
| \text{Val}_{\text{unit}} : \text{Value} \left[\text{unit}\right] \\
| \text{Val}_{\text{nil}} : \text{Value} \left[\text{nil}\right] \\
| \text{Val}_{\text{cons}} : \text{Value} \left[\text{cons} M1 \ M2\right]; \\
\]
\[\text{inductive Eval} : \left[\mathtt{term} \ T\right] \to \left[\mathtt{term} \ T\right] \to \text{ctype} = \\
| \text{Ev}_{\text{app}} : \text{Eval} \left[M1\right] \left[\text{lam} \ \lambda x.N\right] \to \text{Eval} \left[N[M2]\right] \left[V\right] \\
\quad \to \text{Eval} \left[\text{app} M1 \ M2\right] \left[V\right] \\
| \text{Ev}_{\text{val}} : \text{Value} \left[V\right] \\
\quad \to \text{Eval} \left[V\right] \left[V\right] \\
| \text{Ev}_{\text{fix}} : \text{Eval} \left[M[\text{fix} \ \lambda x.M]\right] \left[V\right] \\
\quad \to \text{Eval} \left[\text{fix} \ \lambda x.M\right] \left[V\right] \\
| \text{Ev}_{\text{case_nil}} : \text{Eval} \left[M\right] \left[\text{nil}\right] \to \text{Eval} \left[M1\right] \left[V\right] \\
\quad \to \text{Eval} \left[\text{lcase} M \ M1 \left(\lambda h. \lambda t.M2\right)\right] \left[V\right] \\
| \text{Ev}_{\text{case_cons}} : \text{Eval} \left[M\right] \left[\text{cons} H \ L\right] \to \text{Eval} \left[M2[H, L]\right] \left[V\right] \\
\quad \to \text{Eval} \left[\text{lcase} M \ M1 \left(\lambda h. \lambda t.M2\right)\right] \left[V\right]; \\
\]

Fig. 5. Inductive definition of values and evaluation

empty; to improve readability we simply write \([\text{term } T]\). Note that we can embed contextual types into \textit{Beluga} types, but not vice-versa. There is a strict separation between LF definitions that form our index objects and \textit{Beluga} types that talk about LF definitions.

The inductive type family \textit{Value} defines a subset of closed well-typed expressions, namely those that are the observables of our OL. Similarly, the inductive type family
Eval relates two closed expressions of the same type, where the first big-step evaluates to the second (see Fig. 5).

Beluga has a sophisticated notion of built-in simultaneous substitution. Consider the rule Ev_{app}, where to build the evaluation derivation for $\text{Eval} [\text{app} \; M_1 \; M_2] [V]$ we have to supply an evaluation derivation for $\text{Eval} [M_1] [\lambda x. N]$ and $\text{Eval} [N[M_2]] [V]$ where N stands for a term of type Σ that may refer to $x: \text{term} \; T$. The substitution that in standard LF would be represented as meta-level application $N \; M_2$, here consists of the singleton simultaneous substitution $N[M_2]$ that keeps its domain, namely x, implicit. In general, all capitalized variables denote LF objects that may depend on LF declarations. Given an LF term S that depends on a context γ, we can use \bar{S} in a context ψ by associating \bar{S} with a simultaneous substitution σ with domain ψ and co-domain γ, with type $[\psi \vdash \gamma]$. This closure is written in post-fix notation as $\bar{S}[\sigma]$. If σ is the identity substitution, we may drop the closure. We make use of two kinds of weakening substitutions: 1) The weakening substitution, written as $[\bot]$, moves a closed object from the empty context to a context γ. For example, the type T is closed in $[\text{term} \; T]$. To use the closed type T in a context γ, we need to associate it with the weakening substitution $[\bot]$. Hence, $[\gamma \vdash \text{term} \; T[\bot]]$ describes a term object of type T in a context γ and enforces that the type T is closed. The weakening substitution, written as $[\lambda \cdots]$, moves an object \bar{M} that is defined in a context γ to an extension of γ, for example γ, $x: \text{term} \; T[\bot]$. Finally, we note that $[\lambda x. N] \lambda x. N$ can be expanded to $[\lambda x. N(x)]$ where the substitution that maps x to itself is simply written as $[x]$.

Inductive types in Beluga correspond to least fixed points over an index domain type-theoretically defined using labelled sums and Σ-type (Cave and Pientka, 2012; Thibodeau et al., 2016). Such inductive types must in general satisfy the positivity condition. The surface definition of Value is translated in the following notation where sums are represented as list of labels together with their computation-level types wrapped with $< >$.

$$\mu \text{Value}. \lambda T. M.$$ $$\text{Val}_{\lambda x. N} : \Sigma S_1, S_2:[tp]. T = (\text{arr} \; S_1, S_2) \times \Sigma N : [x: \text{term} \; S_1 \vdash \text{term} \; S_2[\bot]]. M = \lambda x. N,$$

$$\text{Val}_{\text{unit}} : T = \text{top} \times M = \text{unit},$$

$$\text{Val}_{\text{nil}} : \Sigma S:[tp]. T = \text{list} \; S \times M = \text{nil}$$

$$\text{Val}_{\text{cons}} : \Sigma S:[tp]. T = \text{list} \; S \times \Sigma M_1 : [\text{term} \; S]. \Sigma M_2 : [\text{term} \; (\text{list} \; S)]. M = \text{cons} \; M_1 \; M_2 >$$

We use equality constraints to express the refinement of the indices T and M in the above encoding. In general, our index domain is contextual LF (Cave and Pientka, 2012, 2013), which has canonical forms. Hence, checking whether two contextual LF objects are equal simply boils down to comparing their canonical form.

We view Value as a least fixed point definition, although there is no recursive reference to Value. The latter happens in the fragment of the inductive type for Eval:

$$\mu \text{Eval}. \lambda T. M, W.$$ $$\text{Ev}_{\text{app}} : \Sigma S:[tp], M_1 : [\text{term} \; (\text{arr} \; S \; T)], M_2 : [\text{term} \; S], N : [x: \text{term} \; T \vdash \text{term} \; S[\bot]].$$

$$M = (\text{app} \; M_1 \; M_2) \times \text{Eval} [M_1] [\lambda x. N] \times \text{Eval} [N[M_2]] [W]$$

$$\text{E}_{\text{fix}} : \Sigma N : [x: \text{term} \; T \vdash \text{term} \; T[\bot]]. M = \text{fix} \; \lambda x. N \times \text{Eval} [N[\text{fix} \; \lambda x. N]] [W]$$

$$\text{E}_{\text{val}} : M = W \times \text{Value} [W] \ldots >$$
3.3. Encoding similarity using indexed coinductive types

In Beluga, we also can state coinductive type families and in particular similarity as a coinductive definition that relates closed well-typed terms.

```
coinductive Sim : {T: [tp]} [term T] → [term T] → ctype =
| (Sim_unit : Sim [top] [M] [N])
  :: Eval [M] [unit] → Eval [N] [unit]
| (Sim_nil : Sim [list T] [M] [N])
  :: Eval [M] [nil] → Eval [N] [nil]
| (Sim_cons : Sim [list T] [M] [N])
  :: Eval [M] [cons H L] → Ex_sim_cons [H] [L] [N]
| (Sim_lam : Sim [arr S T] [M] [N])
  :: Eval [M] [lam \ x.M'] → Ex_sim_lam [x:term S \ x.M'] [N]

and inductive Ex_sim_cons : [term T] → [term (list T)] → [term (list T)]
  → ctype =
| ESim_cons: Eval [N] [cons H' L']
  → Sim [T] [H] [H'] → Sim [list T] [L] [L']
  → Ex_sim_cons [H] [L] [N]

and inductive Ex_sim_lam : [x:term S \ x.M'] → [term (arr S T)]
  → ctype =
| ESim_lam: Eval [N] [lam \ x.N']
  → ((R:[term S]) Sim [T] [ M'[R] ] [ N'[R] ])
  → Ex_sim_lam [x:term S \ x.M'] [N]
```

Fig. 6. Coinductive definition of applicative similarity

While inductive types are defined by constructors, we define coinductive types by the observations we can make (Abel et al., 2013; Thibodeau et al., 2016). To define the coinductive type Sim [T] [M] [N], we declare observations Sim_unit, Sim_nil, Sim_cons, and Sim_lam; each one corresponds to a case in our definition of applicative simulation — compare Def. 1 to Fig. 6.

When we define an indexed inductive type, the indices impose obligations that must be satisfied in order to construct an object. When we define a coinductive one, indices guard what observations we can make. If the guard is true, then we can make the observation and proceed. We write the observation together with its type on the left side of :: and on the right side we give the result type of the observation that describes our proof obligation. For example, we can make the observation Sim_unit:Sim [top] [M] [N], if we can show that Eval [M] [unit] → Eval [N] [unit]. It corresponds directly to “m \simeq\ n” entails n \simeq\” in Def. 1. Note that M and N are implicitly quantified at the outside, as it becomes apparent in the desugared syntax on page 15. The definition of the observation Sim_nil follows a similar schema.

The result of the observation Sim_cons on Sim [list T] [M] [N] requires that if m \simeq\
cons \(h t \) then there are \(h' \) and \(t' \) such that \(n \downarrow \text{cons} \ h' \ t' \) for which \(h \mathcal{R} \ h' \) and \(t \mathcal{R}_{\text{Sim}(\tau)} \ t' \). We hence need a way to encode an existential property. Although existentials (i.e. \(\Sigma \)-types) exist in our theoretical foundation, the implementation of Beluga does not support them at the top level, as they always can be realized using indexed inductive types. We therefore define an indexed inductive type \(\text{Ex_sim_cons} \) that relates \(h, t \) and \(n \).

Last, we need to represent the result of observing \(\text{Sim_lam} \) that encodes the corresponding part from the definition:

\[
m \downarrow \text{lam} \ x, m' \text{ for any } x : \tau \vdash m' : \tau' \text{ entails that there exists a } y : \tau \vdash n' : \tau' \text{ such that } n \downarrow \text{lam} \ y, n'
\]

for which \(m'[r/x] \mathcal{R}_\tau \ n'[r/y] \) for every term \(r \) of type \(\tau \).

We again resort to defining an inductive type \(\text{Ex_sim_lam} \) that relates the term \(M' \) with type \(x : \text{term} \ S \vdash \text{term} \ T[\mathbb{1}] \), i.e. \(M' \) has type \(\text{term} \ T[\mathbb{1}] \) under the assumption of the variable \(x \) having type \(\text{term} \ S \). Hence we can simply write \(x : \text{term} \ S \vdash M' \), as we interpret \(M' \) within the context \(x : \text{term} \ S \). As \(T \) denotes a closed type, we associate it with a weakening substitution, since it is used in a non-empty context. The relation \(\text{Ex_sim_lam} \) exists if \(\text{Eval} \ [N] \ [\text{lam} \ \lambda x. N'] \) and for all \(R : \text{term} \ S \) we know \(\text{Sim} \ [T] \ [M'[R]] [N'[R]] \).

Finally, we remark that the coinductive type \(\text{Sim} \) and inductive types \(\text{Ex_sim_cons} \) and \(\text{Ex_sim_lam} \) are defined mutually.

In the type-theoretic foundation that underlies Beluga, the coinductive type family \(\text{Sim} \) is encoded using a greatest fixed point that is defined using records, universals (written using \(\Pi \)), and implications.

\[
s \text{Sim} . \lambda T . \lambda M . \lambda N .
\]

\[
\begin{align*}
\{ & \text{Sim_unit} : T = \text{top} \rightarrow \text{Eval} \ [M] \ [\text{unit}] \rightarrow \text{Eval} \ [N] \ [\text{unit}] \\
& \text{Sim_lam} : \Pi S_1 : \text{tp}. \Pi S_2 : \text{tp}. \Pi M' : \text{term} \ S_1 \vdash \text{term} \ S_2[\mathbb{1}] . \ T = \text{arr} \ S_1 \ S_2 \\
& \quad \rightarrow \ \text{Eval} \ [M] \ [\text{lam} \ \lambda x . M'] \\
& \quad \rightarrow \ \Sigma N' : x : \text{term} \ S_1 \vdash \text{term} \ S_2[\mathbb{1}] . \ \text{Eval} \ [N] \ [\text{lam} \ \lambda x . N'] \\
& \quad \times \Pi R : \text{term} \ S_1 . \ \text{Sim} \ [S_2] [M'[\mathbb{1}][R]] [N'[\mathbb{1}][R]]
\end{align*}
\]

We only show the encoding for lambda-expressions and omit the observations we can make on lists to keep it readable. In this internal representation the guards such as \(T = \text{top} \) or \(T = \text{arr} \ S_1 \ S_2 \) are made explicit. We further in-lined the definition of \(\text{Ex_sim_lam} \) to keep the definition compact.

3.4. On the adequacy of coinductive encodings

We next sketch the adequacy of the encoding of similarity; a full proof, such as those in the electronic appendix of Thibodeau et al. (2016) would fill a dozen pages and require to spell out the static and dynamic semantics of (co)inductive Beluga. Instead, we rely on our intuitive understanding of (co)inductive types; to get started, we assume the adequacy of LF encodings, whereby we denote the mapping of terms \(m \) and types \(\tau \) to their encodings as \(\downarrow m \downarrow \) and \(\downarrow \tau \downarrow \) respectively. Conversely, the decoding of an LF object \(M \) and \(T \) into terms and types is written \(\downarrow M \downarrow \) and \(\downarrow T \downarrow \) respectively.

Lemma 7. For any term \(m \) and type \(\tau \), we have \(\downarrow \tau \downarrow \downarrow \tau \downarrow \downarrow \tau = \tau \).

We further build on the adequacy of the encoding of substitutions. In particular, the translation of \([\sigma]m\) is equivalent to first translating \(\sigma\) and the term \(m\) to their corresponding representations in LF and then relying on the built-in simultaneous LF substitution operation of applying \(⌜\sigma\⌝\) to \(⌜m\⌝\). The encoding \(⌜\sigma\⌝\) is defined inductively on the substitution \(\sigma\) as expected: \(⌜·⌝\) = \(\check{\text{and}}\) and \(⌜\sigma,m/x⌝⌝\) = \(⌜\sigma⌝,⌜m⌝\). Further, recall that we write the application of a simultaneous LF substitution in prefix form, while we write the closure of an LF object together with an LF substitution in post-fix.

Lemma 8 (Compositionality). \(⌜[\sigma]m⌝\) = \(⌜[\sigma][\sigma]m⌝\).

Proof. Generalization of the compositionality lemma for LF.

Lemma 9 (Soundness). If \(\text{Sim} \hspace{1mm} [⌜\tau⌝] [⌜m⌝] [⌜n⌝]\) then \(m \preceq_r n\).

Proof. (Sketch) We apply rule \(CI−\preceq\) to unfold \(m \preceq_r n\) selecting the family \(S_\tau\) to be

\[
\{(m,n) \mid \text{Sim} [⌜\tau⌝] [⌜m⌝] [⌜n⌝]\}
\]

We then show that \(S_\tau\) satisfies the simulation conditions unfolding the definition of \(S_\tau\).

Before addressing the other direction, we briefly contrast the more familiar inductive reasoning with the coinductive reasoning we will use. To prove a conjecture inductively on an object, we consider all possible ways such an object can be constructed and we reason inductively about some notion of size of an object or a derivation. In an inductive proof, to show that the property holds for objects of size \(m\), we may assume that it holds for objects of size \(k\) where \(k < m\).

For example, to prove that for all terms \(M\) and \(V\), if \(D : \text{Eval} [M] [V]\) then there exists \(F : \text{Value} [V]\), we proceed by induction on the height \(n\) of \(D\), the derivation of \(\text{Eval} [M] [V]\). We therefore prove the following by considering all possible constructors that we can use to build such a derivation \(D\).

\[
\text{IH}\hspace{1mm} \text{For all } k < n, \text{ for all terms } M\text{ and } V, \\
\text{if } D : \text{Eval} [M] [V] \text{ and size}(D) = k \text{ then there is } F : \text{Value} [V]
\]

To show \(\text{For all term } M\text{ and } V, \text{ if } D : \text{Eval} [M] [V] \text{ and size}(D) = n \text{ then there is } F : \text{Value} [V]\)

Dually, to prove a conjecture coinductively, we consider all possible observations we can make about an object and we reason inductively on the number of observations, which we refer to as depth. In a coinductive proof, we assume that the conjecture holds when we can make \(k\) observations about the object, and we show that the conjecture also holds when we make \(n\) observations about it where \(k < n\). In essence, to prove a statement by coinduction we reason by complete induction on the number of observations. For example, if we want to prove reflexivity of simulation, i.e. for all terms \(M\) and types \(T\), \(D : \text{Sim} [T] [M] [M]\), then we proceed by induction on the number of observation on \(D\) and consider all possible observations we can make about \(D\).
Lemma 10 (Completeness). If $m \not\preceq_T n$, then $\text{Sim}\left[\tau\right] [m] [n]$.

Proof. We proceed by complete induction on the number of observations we can make on $\text{Sim}\left[\tau\right] [m] [n]$.

IH For all $k < j$, for all terms m and types τ,

To show For all terms m and types τ, if $S : m \not\preceq_T n$, then $\text{Sim}\left[\tau\right] [m] [n]$ and depth(D) = k

We are now ready to address the other direction of the adequacy statement. For a more formal justification of reasoning about inductive data via sizes and coinductive data via induction hypothesis, which can be specialized to the following statement:

$\tau = \bot$ \hspace{1cm} by definition of τ

$m \not\vdash ()$ entails $n \not\vdash ()$ \hspace{1cm} by Def. 1 using the assumption $m \not\preceq_T n$

λ $\text{Eval}[m] [unit] \vdash m \not\vdash ()$ \hspace{1cm} by decoding of Eval

$n \not\vdash ()$ \hspace{1cm} by previous lines

$\tau_n \not\vdash () = \text{Eval}[n] [unit]$ \hspace{1cm} by encoding of Eval

Observation Sim_unit.

To show: For all $m \not\preceq_T n$ then $(\tau) = \text{top} \rightarrow \text{Eval}[m] [unit] \rightarrow \text{Eval}[n] [unit]$.

Assume $m \not\preceq_T n$, $(\tau) = \text{top}$, and $\text{Eval}[m] [unit]$

Making an observation corresponds to projecting with the dot notation the field Sim_λ of the record. We further note that depth($D . \text{Sim}_\lambda)$ = depth(D) + 1. Since we are making the observation Sim_λ, we can unfold the definitions. Hence, it suffices to show

if $m \not\preceq_T n$ then

for all $S_1, S_2, M. (\tau) = \text{arr } S_1 S_2 \rightarrow \text{Eval}[m] [\lambda x. M]$

\rightarrow there exists N s.t. $\text{Eval}[N] [\lambda x. N']$

and (for all R, $D : \text{Sim}[S_2][M[R]] [N[R]]$)

Moreover, depth(D) is clearly less than depth($D . \text{Sim}_\lambda$) and we may appeal to the induction hypothesis, which can be specialized to the following statement:

if $[r/x]m' \preceq_{s_2} [r/y]n'$ then $\text{Sim}[S_2][M'[R]] [N'[R]]$ where $\tau m' \preceq M'$, $\tau n' \preceq R$, $\tau n' \preceq N'$.

Case-Study for Coinductive Proofs
Assume \(m \leq_{\tau} n \), \(\tau \vdash n \). Therefore, \(\exists N \) such that for any \(x: s_1 \vdash m': s_2 \), \(\exists \text{ lam } x. m' \) entails that there exists a \(y: s_1 \vdash n': s_2 \) such that \(\exists y \vdash \text{ lam } y. n' \) and for every \(r: s_1 \), \([r/x]m' \leq_{s_2} [r/y]n' \) by definition of \(m \leq_{\tau} n \)

\[
\begin{align*}
\text{Eval} \ [m] & \ \vdash \ \text{lam } x. M \\
\text{lam } x. M' & \ \vdash \ [m] \\
\text{there exists a } y: s_1 \vdash n': s_2 & \ \text{such that } n \vdash \text{lam } y. n' \\
\text{and for every } r: s_1, & \ [r/x]m' \leq_{s_2} [r/y]n' \ \\
\text{by previous lines}
\end{align*}
\]

\[
\begin{align*}
\tau & \vdash n \vdash \text{lam } y. n' \\
\text{Assume } \text{R : term } S_1, & \ \vdash [r/x]n' \vdash M[R] \ \text{and } \vdash [r/y]n' \vdash N[R] \ \\
\text{Sim} \ [S_2] & \ [M[R]] \ [N[R]] \ \text{by Theorem 8 (Compositionality)}
\end{align*}
\]

Therefore, there exists \(N' \), namely \(\vdash n' \), and \(\text{Eval} \ [n'] \ [\text{lam } y. n'] \) and for all \(\text{R: term } S_1 \), we have \(\text{Sim} \ [S_2] \ [M[R]] \ [N[R]] \). Hence, \(\vdash [s_1 \rightarrow s_2] \ [m] \ [n] \). This concludes this case.

\section{Writing coinductive proofs using copattern matching}

In \texttt{Beluga}, we implement (co)inductive proofs as (co)recursive functions using (co)pattern matching.

Let us reconsider first the proof that similarity is reflexive (Fig. 7): for all \(T, M \), we have \(\text{Sim} \ [T] \ [M] \ [N] \). The type of the function \texttt{sim_refl} encodes this statement directly. We leave \(T \) and \(M \) implicit, as these arguments can be reconstructed by \texttt{Beluga}.

To prove our statement, we consider each case by writing the observation on the left hand side of our corecursive function and provide a witness of the appropriate type on the right hand side. We write observations as \textit{projections} prefixing them with a dot.

We recall that each observation is implicitly guarded by a constraint (for example \texttt{Sim_unit} is guarded by \(T = \text{top} \)) and we can only make the observation if the constraint is satisfied. \texttt{Beluga} reconstructs proofs for such equality guards and associates them implicitly with the observation. If the guard is not satisfied, i.e. no proof that \(T = \text{top} \).
for example exists, then the case is trivially satisfied, and we omit it from our function definition.

In general, the arguments of a function definition in Beluga may consist of index objects, patterns describing inductive objects, and copatterns (i.e., observations) defining coinductive objects. In fact, the function \texttt{sim_refl} takes first the two arguments that we left implicit, namely \(T\) and \(M\), before it expects each observation.

\textbf{Observation} \(\text{Sim_unit}\) and \(T = \text{top}\). In this case we need to construct a witness for \(\text{Eval} \ [M] \ [\text{unit}] \rightarrow \text{Eval} \ [M] \ [\text{unit}]\). This is simply the identity function that maps \(d: \text{Eval} \ [M] \ [\text{unit}]\) to itself. Note that instead of returning a function, we write \(d\) on the left hand side of our function definition.

\textbf{Observation} \(\text{Sim_nil}\) and \(T = \text{list} \ T'\). Similar to the previous case.

\textbf{Observation} \(\text{Sim_cons}\) and \(T = \text{list} \ T'\). In this case, \(d: \text{Eval} \ [M] \ [\text{cons} \ H \ T]\) and we need to supply a witness for \(\text{Ex_sim_cons} \ [H] \ [L] \ [M]\): we choose \(d\) for \(\text{Eval} \ [M] \ [\text{cons} \ H \ L]\) and make two corecursive calls on \(L\) and \(H\) respectively.

Hence, a corecursive call is only valid if it is guarded by at least an observation on the left hand side of a function definition, as we comment on next.

\textbf{Observation} \(\text{Sim_lam}\) and \(T = (\text{arr} \ S \ S')\). We have \(d: \text{Eval} \ [M] \ [\lambda x. M']\) and we need to provide a witness for \(\text{Ex_sim_lam} \ [x: \text{term} \ S \vdash M'] \ [M]\): we again choose \(d\) for \(\text{Eval} \ [M] \ [\lambda x. M']\) and then build a function of type \(\{R: \text{term} \ S\} \text{Sim} \ [S'] \ [M'[R]]\) \([M'[R]]\) that makes a corecursive call to \texttt{sim_refl}. We note that in this case we build a function using \texttt{mlam}, which declares a \(\Pi\)-type quantification over LF objects, as opposed to \texttt{fun} that applied to top-level abstraction. The name \(R\) is required by \texttt{mlam}, although it is only actually used in the reconstructed argument to the recursive call.

As we mentioned above, in order for a term like \texttt{sim_refl} to be considered a proof, it needs to be \textit{covering} and \textit{productive}. To be covering, a term of codata type needs to have a branch for each possible observation. In this case, since \texttt{sim_refl} does not require a particular shape for the type of \(M\) and \(N\), we need to provide all the possible observations. However, if we were to prove reflexivity only for terms of type \texttt{list} \(T\), i.e., \(\text{Sim} \ [\text{list} \ T] \ [M] \ [M]\), then we are justified to consider the branches for \texttt{Sim_cons} and \texttt{Sim_nil}.

Similarly to other languages with support for coinduction, we achieve productivity through a guardedness check. However, this check is different from the one implemented in systems such as Coq. There, we define coinductive types through lazy constructors.
Thus, recursive calls are restricted, or guarded, as to be performed only under such constructors. With copatterns, coinductive terms are defined via observations that serve to delay computation. As such, guardedness restricts recursive occurrences to be performed under observations; hence each step of unfolding requires at least one observation to be applied. For example, in the arrow case of the above proof, the corecursive call is justified, as it is guarded by the observation Sim_lam, which increases the number of observations made. This is sufficient, as operationally each step of unfolding requires at least one observation to be applied — otherwise the corecursive function could not progress.

Next, we consider the proof that applicative similarity is transitive: if $\text{Sim}_T [M] [N]$ and $\text{Sim}_T [N] [R]$, then $\text{Sim}_T [M] [R]$ (Fig. 8). We comment on a couple of cases:

\[
\text{rec sim_trans} : \text{Sim}_T [M] [N] \rightarrow \text{Sim}_T [N] [R] \rightarrow \text{Sim}_T [M] [R] = \\
\text{fun s1 s2 .Sim_unit d ⇒ s2.Sim_unit (s1.Sim_unit d)} \\
| s1 s2 .Sim_nil d ⇒ s2.Sim_nil (s1.Sim_nil d) \\
| s1 s2 .Sim_cons d ⇒ \\
\hspace{1cm} \text{let ESim_cons d1 s1'' = s1.Sim_cons d in} \\
\hspace{1cm} \text{let ESim_cons d2 s2'' = s2.Sim_cons d1 in} \\
\hspace{1cm} \text{ESim_cons d2 (sim_trans s1'' s2'') (sim_trans s1''' s2''')} \\
| s1 s2 .Sim_lam d ⇒ \\
\hspace{1cm} \text{let ESim_lam d1 s1' = s1.Sim_lam d in} \\
\hspace{1cm} \text{let ESim_lam d2 s2' = s2.Sim_lam d1 in} \\
\hspace{1cm} \text{ESim_lam d2 (mlam P ⇒ sim_trans (s1' [P]) (s2' [P]))}
\]

Fig. 8. Corecursive program showing that similarity is transitive

Observation Sim_unit and $T = \text{top}$. We have the following assumptions: $s1: \text{Sim}_T [\text{top}] [M] [N]$, $s2: \text{Sim}_T [\text{top}] [N] [R]$, and $d: \text{Eval}_T [\text{unit}]$ and we need to provide a witness for $\text{Eval}_T [R] [\text{unit}]$. By the observation Sim_unit on $s2$ (written as the projection $s2.\text{Sim}_\text{unit}$), we obtain a function $\text{Eval}_T [N] [\text{unit}] \rightarrow \text{Eval}_T [R] [\text{unit}]$. We pass to it the result of $s1.\text{Sim}_\text{unit} d$.

Observation Sim_lam and $T = (\text{arr} S S')$. We have the assumptions: $s1: \text{Sim}_T [\text{arr} S T] [M] [N]$ and $s2: \text{Sim}_T [\text{arr} S T] [N] [R]$ and $d: \text{Eval}_T [\lambda x. M']$ and we need to build a witness for $\text{Ex_sim_lam} [x: \text{term} S \vdash M'] [R]$. We first observe $s1.\text{Sim}_\text{lam}$ and pass $d: \text{Eval}_T [\lambda x. M']$ which provides us with $d1: \text{Eval}_T [\lambda x. N']$ and $s1'.: P: \text{term} S$ $\text{Sim}_T [M' [P]] [N'[P]]$. Similarly, we observe $s2.\text{Sim}_\text{lam}$ passing $d1: \text{Eval}_T [\lambda x. N']$. Hence we obtain $\text{Ex_sim_lam} [x: \text{term} S \vdash N'] [R]', which provides us with $d2: \text{Eval}_T [\lambda x. R']$ and $s2'.: P: \text{term} S$ $\text{Sim}_T [N'[P]] [R'[P]]$. Building a witness for $\text{Ex_sim_lam} [x: \text{term} S \vdash N'] [R]$ requires us to supply a derivation $d2: \text{Eval}_T [\lambda x. R']$ and a function of type $P: \text{term} S$ $\text{Sim}_T [M'[P]] [R'[P]]$. We build that function making a corecursive call.
3.6. A concrete example of similarity

In this section we show how we can interactively build an actual simulation between two terms, namely that \texttt{two} is simulated by \texttt{suc \ one}, following the example in (Pitts, 2011). We represent the numbers via Church encodings, where \texttt{one} ≡ \texttt{lam \ f. lam \ x. f \ x}, \texttt{two} ≡ \texttt{lam \ f. lam \ x. f (f \ x)}, and \texttt{suc} ≡ \texttt{lam \ n. lam \ x. lam \ y. x \ (n \ x \ y)}. We thus want to prove the following theorem:

\begin{verbatim}
rec sim_two_succ_one :
 Sim [] [lam \f.lam \x.app f (app f x)]
 [app (lam \n. lam \x. lam \y. app x (app (app n x) y))
 (lam \f.lam \x.app f x)]
\end{verbatim}

We will build the proof incrementally, by inserting \texttt{holes}, denoted by \texttt{?} and refining them, analogously to Agda's or Epigram's methodology (McBride, 2004). We start with the following program body:

\begin{verbatim}
fun .Sim_lam (Ev_val Val_lam) ⇒
 ESim_lam (Ev_app (Ev_val Val_lam) (Ev_val Val_lam)) sim_lemma1
\end{verbatim}

where \texttt{sim_lemma1} is used to abstract over the nested copattern matching:

\begin{verbatim}
rec sim_lemma1 : {M:exp (arr T T)}
 Sim [arr T T]
 [lam \x. app M[] (app M[] x)]
 [lam \y. app M[] (app (app (lam \f. lam \w. app f w))) M[] y)] =
fun [M] .Sim_lam (Ev_val Val_lam) ⇒
 ESim_lam (Ev_val Val_lam)
 (mlam N ⇒ ?)
\end{verbatim}

Here, the goal has type \texttt{Sim [] [app M (app M N)] [app M (app (lam \f. lam \w. app f w))) M N]}, which we cannot prove directly using our definition of similarity: since our evaluation strategy is call-by-name and the metavariable \texttt{M} is not a concrete term, the right-hand side will not reduce. Instead, we use the fact that similarity is a pre-congruence, the main result of this work. We only need property (C3) of Definition 2, which translates to the following lemma.

\begin{verbatim}
rec sim_cong_app : Sim [arr S T] [M1] [M2] → Sim [S] [N1] [N2]
 → Sim [T] [app M1 N1] [app M2 N2]
\end{verbatim}

Using this result and reflexivity of similarity, we can thus refine the body of \texttt{sim_lemma1}:

\begin{verbatim}
fun [M] .Sim_lam (Ev_val Val_lam) ⇒
 ESim_lam (Ev_val Val_lam)
 (mlam N ⇒ sim_cong_app sim_refl ?)
\end{verbatim}

where the current hole has type:

\begin{verbatim}
 Sim [T] [app M N] [app (lam \u. lam \w. app u w)) M N]
\end{verbatim}

Now, we can easily use a derivation of the evaluation of the left-hand side to derive the evaluation of the right-hand side of this similarity as follows:
Constructing the above simulation requires us to match on the possible values that \(\text{app } M \ N \) can take through the possible observations — in fact all of them as the type \(\mathbb{T} \) is abstract. We then use \(\text{ev1} \) on the derivations of \(\text{Eval } \text{app } M \ N \text{ } [V] \) for the given \(V \) and reflexivity when needed.

\[
\text{rec ev1 : Eval } [\text{app } M \ N] [V] \rightarrow \text{Eval } [\text{app } (\text{app } (\lambda u. \text{lam } (\lambda w. \text{app } u \ w))) M \ N] [V] = \\
\text{fun } d \Rightarrow \text{Ev_app } (\text{Ev_app } (\text{Ev_val } \text{Val_lam}) (\text{Ev_val } \text{Val_lam})) \ d;
\]

Using this lemma, we can complete the body of \(\text{sim lemma1} \):

\[
\text{fun [M] .Sim_lam (Ev_val Val_lam) } \Rightarrow \text{ExSimlam } (\text{Ev_val } \text{Val_lam}) (\text{mlam } N \Rightarrow \text{sim_cong_app } \text{sim_refl} \text{sim_lemma2})
\]

This concludes the proof.

3.7. Defining open similarity using first-class contexts and substitutions

Similarity only relates closed terms. However, in general, we want to be able to reason about similarity of open terms, i.e. terms that depend on a context \(\gamma \). In Beluga, we can declare schemas of contexts that classify contexts in the same way that types classify terms and kinds classify types, describing the shape of each declaration in a context. Moreover, we can take advantage of built-in substitutions to relate two contexts. In particular, we can describe grounding substitutions with the type \([\vdash \gamma] \), where the range of the substitution is empty.

We begin by defining the schema of contexts that can occur in our development:

\[
\text{schema ctx = term } \mathbb{T};
\]

Here we declare the schema \(\text{ctx} \) that states that each declaration of a context \(\gamma \) of schema \(\text{ctx} \) can only contain variable declarations of type \(\text{term } \mathbb{T} \) for some type \(\mathbb{T} \). For example, the context \(x:\text{term top}, y:\text{term } (\text{list top}) \) is a valid context of schema \(\text{ctx} \). On the other hand, a context \(x:\text{term unit}, a:\text{tp} \) is not.

We can now state open similarity as an inductive type relating well-typed terms in the context \(\gamma \). In the kind of the inductive type \(\text{OSim} \), we make the type \(\mathbb{T} \) explicit, but leave \(\gamma \) implicit. This distinction is reflected in Beluga’s source syntax. We use curly braces \{ \} to describe explicit index arguments and round ones () to give type annotations implicitly.

We can now define open similarity: two terms \([\gamma \vdash M] \) and \([\gamma \vdash N] \) are openly similar if they are similar for all grounding substitutions \(\sigma \). Here, we pass \(\gamma \) explicitly to \(\text{OSimC} \) so that Beluga knows the type of \(\sigma \).
The encoding of the Howe relation (see Fig. 9) is, in our view, one of the high points of the formalization: it follows very closely its mathematical formulation, while retaining all the powerful abstractions that Beluga offers. This is apparent in the variable case where Beluga’s parameter variables, denoted #p, range over elements from the context γ. They permit us to precisely characterize when a variable is Howe related to a term M in the given context, while looking remarkably similar to the informal version. The same applies to lambda-abstractions case, where one notes the correct scoping of M, N and R w.r.t. γ. The cases for fix and lcase follow the same principle and we omit them to save space.

The structure of the Howe relation makes it trivial to prove it is a precongruence. We show here the proof in the application case, which is indirectly used for the example of simulation we presented above. The proof of precongruence of similarity in fact follows immediately once we prove equivalent similarity and the Howe relation, see Section 3.10.

```plaintext
rec howe_cong_app : Howe [arr S T] [M1] [M2] → Howe [S] [N1] [N2] → Howe [T] [app M1 N1] [app M2 N2] = fun h1 h2 ⇒ Howe_app h1 h2 osim_refl;
```
Using reflexivity and transitivity of open similarity, respectively, we can show reflexivity and semi-transitivity of the candidate relation. We only show the types.

```plaintext
rec howe_refl : (γ:ctx) {M:[ψ ⊢ term T[]]} Howe [T] [ψ ⊢ M] [ψ ⊢ M]
rec howe_osim_trans : (γ:ctx) Howe [T] [ψ ⊢ M] [ψ ⊢ N] → OSim [T] [ψ ⊢ N] [ψ ⊢ R] → Howe [T] [ψ ⊢ M] [ψ ⊢ R]
```

From this it immediately follows that open similarity is a Howe relation.

```plaintext
rec osim_howe:(γ:ctx) OSim [T] [ψ ⊢ M] [ψ ⊢ N] → Howe [T] [ψ ⊢ M] [ψ ⊢ N]
fun s ⇒ howe_osim_trans (howe_refl [_ ⊢ _]) s
```

3.9. Substitutivity of the Howe relation

As remarked in Section 2.2, a crucial point of the proof is showing that the Howe relation is substitutive. Traditionally, substitution properties tend to be tedious to prove in proof assistants due to the necessity to reason manually about contexts. Here, Beluga’s contextual abstractions significantly reduces the amount of boilerplate work needed for that proof.

We first encode (Fig. 10) $\Phi \vdash \sigma_1 \leq H \sigma_2$ using an inductive type that relates two simultaneous substitutions. The base case relates empty substitutions, written as $[\psi \vdash _]$. In the inductive case, the substitution $[\psi \vdash \sigma_1, M]$ and $[\psi \vdash \sigma_2, N]$ are related, if so are $[\psi \vdash \sigma_1]$ and $[\psi \vdash \sigma_2]$ and $[\psi \vdash M]$ is Howe related to $[\psi \vdash N]$.

In the subsequent proofs, we rely on the weakening property of simultaneous substitutions: namely, that weakening preserves Howe-relatedness, see function `howe_subst_wkn` in Fig. 10. In Beluga, weakening a substitution is simply achieved by composing it with the weakening substitution $[..]$, which has here domain ψ and range $\psi, x:term S[]$. This is supported in Beluga’s theory of simultaneous substitutions (Cave and Pientka, 2013), which internalizes the notions in Fig. 3. is done by induction over the predicate `Howe_subst` and by appealing to a special case of substitutivity of Howe on renamings.
In the interest of space, we omit those proofs. In the following, namely in the proof of `howe_osim`, see Fig. 12, we will also need the following reflexivity property of `Howe_subst`, which holds by a simple induction on substitutions:

\[
\text{rec} \ \text{howe_subst_refl} : (\gamma : \text{ctx}) (\psi : \text{ctx}) \sigma : [\psi \vdash \gamma] \ \text{Howe_subst} \ [\gamma] \ [\psi \vdash \sigma] \ [\psi \vdash \sigma]
\]

A fragment of the proof of substitutivity in Beluga appears in Fig. 11. We only show here the same two cases we described in the informal proof, together with the variable case, but the remaining cases follow a similar pattern. We make use of the lemmas described above, together with the following additional lemma for the variable case:

\[
\text{rec} \ \text{howe_subst_var} : (\gamma : \text{ctx}) (\psi : \text{ctx}) \ \text{Howe} \ [T] \ [\gamma \vdash M] \rightarrow \text{Howe_subst} \ [\gamma] \ [\psi \vdash \sigma_1] \ [\psi \vdash \sigma_2] \rightarrow \text{Howe} \ [T] \ [\psi \vdash \#p[\sigma_1]] \ [\psi \vdash M[\sigma_2]] =
\]

This is proven by simple induction on the position of the variable in the context which follows the inductive definition of `Howe_subst`.

We can see that `howe_subst` straightforwardly represents the proof of Lemma 6. What is remarkable in this program with respect to the informal proof is that there are no explicit references to the substitution properties outside of the weakening of the Howe relation on substitutions. The encoding is very concise and captures the essential steps in the proof.

\[
\text{rec} \ \text{howe_subst} : \ \text{Howe} \ [T] \ [\gamma \vdash M] \ [\gamma \vdash N] \\
\rightarrow \text{Howe_subst} \ [\gamma] \ [\psi \vdash \sigma_1] \ [\psi \vdash \sigma_2] \\
\rightarrow \text{Howe} \ [T] \ [\psi \vdash M[\sigma_1]] \ [\psi \vdash N[\sigma_2]] =
\]

\[
\text{fun} \ h \ (hs : \text{howe_subst} \ [\gamma] \ [\psi \vdash \sigma_1] \ [\psi \vdash \sigma_2]) \Rightarrow
\text{case} \ h \ \text{of}
\]

\[
\text{| Howe_var [\gamma \vdash \#p] s} \Rightarrow \text{howe_subst_var} h \ hs \\
\text{| Howe_lam h' s} \Rightarrow
\text{HCons} \ (\text{howe_subst_wkn} \ hs) \\
\text{HCons} \ (\text{howe_refl} \ [\psi \vdash \sigma_1] \ [\psi \vdash \sigma_2]) \\
\text{(osim_cus [\psi \vdash \sigma_2] s)} \\
\text{| Howe_app h' h2' s} \Rightarrow
\text{howe_app} \ (\text{howe_subst} \ h' \ hs) \ (\text{howe_subst} \ h2' \ hs) \ (\text{osim_cus} [\psi \vdash \sigma_2] s);
\]

Fig. 11. Substitutivity property of the Howe relation

3.10. Main theorem

The key lemma in our main theorem is the proof that the Howe relation is *downward closed*:

\[
\text{rec} \ \text{down_closed} : \ \text{Eval} \ [M] \ [V] \rightarrow \text{Howe} \ [T] \ [M] \ [N] \rightarrow \text{Howe} \ [T] \ [V] \ [N]
\]
A. Momigliano, B. Pientka, and D. Thibodeau

rec howe_sim : Howe [T] [M] [N] → Sim [T] [M] [N] =
fun h .Sim_unit e ⇒ howe_ev_unit (down_closed e h)
| h .Sim_nil e ⇒ howe_ev_nil (down_closed e h)
| h .Sim_cons e ⇒
 let Howe_consC e' h1 h2 = howe_ev_cons (down_closed e h)
in
 ESim_cons e' (howe_sim h1) (howe_sim h2)
| h .Sim_lam e ⇒
 let Howe_absC e' f = howe_ev_abs (down_closed e h)
in
 ESim_lam e' (mlam R ⇒ howe_sim (f [R]))

rec howe_osim : {
 γ : ctx
 | Howe [T] [γ ⊢ M] [γ ⊢ N] → OSim [T] [γ ⊢ M] [γ ⊢ N] =
 fun [γ] h ⇒ OSimC (mlam σ ⇒ howe_sim (howe_subst h (howeSubst_refl [σ])));

Fig. 12. The Howe relation is included in open similarity

The proof of this lemma (point 2.1 at page 8) relies on several previous lemmas such as transitivity of closed and open similarity, semi-transitivity and substitutivity of the Howe relation, together with the unfolding of similarity using the observations. The proof is otherwise straightforward but long, and we leave it to the online documentation.

Moving on, we first establish lemmas that mimic the similarity conditions (previous point 2.1). For example: If \(\text{lam} \ x. \ m \lleq H \tau \rightarrow \tau' n \), then \(n \lleq \text{lam} \ x. \ m' \) and for every \(\tau \) we have \([q/x]m \lleq H \tau'[q/x]m' \). Again, as we do not have existential types, we encode the existence of a term \(N' \) using the inductive types Howe_abs. A fragment of the type signature is as follows:

\[
\text{inductive Howe_abs: } [x: \text{term } S \vdash \text{term } T] \rightarrow [\text{term } \text{arr } S T] \rightarrow \text{ctype} =
\]
\[
| Howe_absC : \text{Eval } [N] [\text{lam } \lambda x. N']
→ \langle R:[\text{term } T] \rangle \text{ Howe } [T'] [M'[R]] [N'[R]]
→ \text{HoweAbs } [x: \text{term } S \vdash M'] [N];
\]
\[
\text{rec howe_ev_abs : Howe } [\text{arr } S T] [\text{lam } \lambda x. N'] [N]
→ \text{HoweAbs } [x: \text{term } S \vdash M'] [N]
\]

We are now ready to prove that the Howe relation coincides with open similarity. We do this by first proving that, in the empty context, the Howe relation is a similarity, then we embed the open version into an open similarity. To do so, we construct out of the input substitution \(\sigma \) for open similarity a derivation \(\cdot \vdash \sigma \lleq H \sigma \) by reflexivity. The proofs appear in Fig. 12.

4. Related work

As we mentioned before, Beluga implements indexed copatterns following Thibodeau et al. (2016). Beluga is certainly not the only system to feature copatterns, which have been first implemented in MiniAgda (Abel, 2012) in an early form and then in Agda
as a prototype (Abel et al., 2013). Copatterns now show up even in mainstream programming languages such as OCaml (Laforgue and Régis-Gianas, 2017) as they allow us to integrate elegantly lazy evaluation within an eager language. However, Beluga is the only system supporting coinductive reasoning about HOAS representation using copatterns (Thibodeau et al., 2016).

The observation paradigm differs from a more traditional approach using lazy constructors as adopted by Coq (Giménez, 1996), in that coinductive types are defined by their elimination rules as opposed to their introduction rules. Coq’s intensional type theory offers a strong decidable equational theory through dependent pattern matching, but loses subject reduction in the presence of coinduction (Oury, 2008). In fact, the change of paradigm to observations was proposed to overcome that issue with subject reduction when mixing lazy constructors with dependent case analysis (Abel et al., 2013). Isabelle recently also overhauled (see for example (Biendarra et al., 2017)) their handling of coinduction. In contrast to type theories, this approach is based on higher-order logic and aims to derive more expressive coinduction principles from primitive ones.

The first HOAS-like formal verification of the congruence of a notion of bisimilarity concerned the π-calculus (Honsell et al., 2001) and was carried out in Coq using the Weak HOAS approach and instantiating the Theory of Contexts to axiomatizing properties of names. As common in many coinductive developments in Coq, the authors soon ran afoul of the guardedness checker in Cofix-style proofs and had to resort to an explicit greatest-fixed point encoding for Strong Late Bisimilairty. Abella’s take on the same issue (Tiu and Miller, 2010) seems preferable; that paper details, among so much more, a proof that similarity is a pre-congruence for the finite π-calculus. The encoding is rather elegant, where all issues involving bindings, names, and substitutions are handled declaratively without explicit side-conditions, thanks to the ∇-quantifier. This style of encoding has been extended in (Chaudhuri et al., 2015) to handle bisimilarity “up-to”. This is achieved via a limited form of quantification on relations that does not have, to our knowledge, a consistency proof yet. The authors do not pursue a proof of congruence in the cited paper.

Recent years have seen much work regarding the formalization of process calculi, in particular using Nominal Isabelle. We do not have the space to discuss this line of work in detail but simply cite some of the many contributions from Parrow and his associates (Bengtson and Parrow, 2009; Parrow et al., 2014; Bengtson et al., 2016) about various versions of the π/ψ-calculus and their congruence properties, without resorting to the Howe’s proof strategy.

Encoding bisimilarity in the λ-calculus, in particular via Howe’s method, brings in additional challenges, as we have seen. We are aware of several formalizations through the years:

1. In (Ambler and Crole, 1999) the authors verify in Isabelle/HOL 98 the same result of the present paper and a bit more (they also show that similarity coincides with contextual pre-order) for PCFL using de Bruijn indexes as an encoding techniques for binders. The development, for the congruence part, consists of around 160 lem-
mas/theorems, and it confirms a common belief about (standard) concrete syntax approaches: doable, but very hard-going;

2. A partial improvement was presented in (Momigliano et al., 2002), which was based on the HOAS approach implemented in an early version of the Hybrid tool (Felty and Momigliano, 2012), but one crucial lemma was left unproven, tellingly: Howe’s substitutivity. This was related to the difficulty of lifting substitution as β-conversion to substitution on judgments in one-level Hybrid term;

3. In Momigliano (2012) the author fixed this problem, giving a complete Abella proof for the simply typed calculus with unit. The proof consists of circa 45 theorems, 1/4 of which devoted to maintaining typing invariants in (open)similarity and in the candidate relation, 1/7 of which instead used to make sure that some ∇-quantified variable cannot occur in certain predicates. The main source of difficulty was again in the proof of substitutivity of the Howe relation, in particular while handling structural properties of explicit contexts.

4. Using the present paper as a blue print, Chaudhuri (2018) gives a proof in Abella of the substitutivity of the Howe relation that is very close to the one discussed here; it is based on a theory of first class simultaneous substitutions encoded via the copy clauses as originally suggested by Miller: $m_1/x_1,\ldots,m_n/x_n$ is represented as the Abella context $\text{copy } m n m n :: \ldots :: \text{copy } m 1 n 1 :: \text{nil}$. The application of a substitution $[\sigma]m = n$ becomes the derivability of the judgment $\{\sigma\} \vdash \text{copy } m ; n \}$. The theory underlying this formalization consists of 15 theorems, 4 of which are sensitive to the signature: in this sense the theory has to be stated and re-proven for each signature. The effort required to automate the infrastructure for simultaneous substitutions in Abella should be analogous to similar libraries in Coq (Kaiser et al., 2017). Compared to the Beluga development, where substitutions and their equality theory are built-in, this is more labour-intense roughly adding a factor of 1.6. Moreover, Abella’s proposed handling of simultaneous substitutions is, of course, relational and must be explicitly applied whenever needed. For example, the proof of osimocus, which in Beluga is a one liner, requires here the appeal to five lemmas to ensure that substitutions and their compositions are functional, that types and well-formedness of contexts are preserved etc.

In another recent paper McLaughlin et al. (2018) give a formalization of the coincidence of observational and applicative approximation not going through the candidate relation, but triangulating with a notion of logical (as in logical relations) approximation. This is then extended to CIU approximation. The encoding uses first-order syntax for terms, but a form of weak HOAS for judgments following Allais et al. (2017), and it is therefore compatible with a standard proof assistant such as Agda. Similarly to us, it leverages the use of intrinsically well-typed and well-scoped terms and simultaneous substitutions, although the latter are not supported natively by the framework. Interestingly, it offers an elegant notion of concrete context (and thus of Morris approximation) that seems much easier to reason with than previous efforts (Ford and Mason, 2003).

Lenglet and Schmitt (2018) present a formalization of Sangiorgi’s Higher-Order π-calculus in Coq, using the locally nameless approach to representing name restriction and well-scoped de Bruijn indices for process variables. The formalization includes a proof
that strong context bisimilarity is a congruence, via an adaptation to the concurrent setting of Howe’s method. The authors seem unaware of HOAS representations of the π-calculus and the representation technique adopted, albeit state of the art among the concrete ones, still requires a lot of boilerplate infrastructure to handle names and related notions.

5. Conclusions and future work

We have outlined how to use Beluga to encode a significant example of reasoning about program equivalence using Howe’s method for PCFL. This has reinforced several observations that we have been making in other case studies, viz. (Cave and Pientka, 2015, 2018):

— Using intrinsically typed terms instead of working with explicit typing invariants makes our encoding more compact and easier to deal with, since HOAS maintains our terms well-scoped. The advantages of intrinsically typed representations have also been observed in non-HOAS setting (Benton et al., 2012; Allais et al., 2017).

— The support for built-in simultaneous substitutions and contexts lead us to generalize some statements, for example substitutivity; but this paid off in our mechanization, as many crucial lemmas became simpler to prove.

— Thanks to catering for both indexed inductive and coinductive data-types in Beluga, the encoding of similarity and of the candidate relation was concise and as close as the informal presentation as one can reasonably hope for.

An important question, when discussing formalizations, regards trust in mechanized proofs. There are two aspects that play a role: the first concerns the theoretical foundations underlying a proof environment and the second the implementation of that foundation in a concrete system. Beluga’s theoretical foundation provides the justification for reading its programs as proofs. For reasoning inductively directly over contextual LF objects, we exploit the subterm ordering on LF terms, see (Pientka, 2001, 2005; Pientka and Abel, 2015). Our (co)inductive programs give a high-level surface language to the core calculus described in Jacob-Rao et al. (2018). Coverage for our programs using (co)pattern matching is described in Thibodeau et al. (2016) and the well-foundedness of such programs is justified by reasoning about sizes, where the size describes the depth of observations in the co-recursive case (Abel and Pientka, 2016, 2013). Hence, the theoretical foundations for justifying the formalization of this case study are well developed.

The implementation of these theoretical ideas in Beluga (status: July 2018) — as it is often the case — lags slightly behind; in particular, we plan to extend the implementation of our totality checker to support simultaneous (co) copattern matching following Thibodeau et al. (2016) and Abel and Pientka (2013). This would allow us not only to certify inductive proofs, but also coinductive ones in practice.

While we hope that we have succeeded in showing that Beluga is an excellent environment for the meta-theory of program equivalence, this case study has shown that is not well suited (yet) to verifying the equivalence of concrete pieces of code. To approach this,
we need not only to improve the interactive proof construction mode similarly to what Agda offers, but to investigate proof search and refutation.

Last but not least, we take a look beyond mechanizing bisimilarity which has been the focus of this paper. The attentive reader may have noticed that we have not proven that bisimilarity coincides with contextual equivalence, as e.g., in (Ambler and Crole, 1999). The challenge lies in the encoding of the latter notion: we would rather avoid using a notion of concrete non-α-equivalent terms with holes, in favour of a context-less formulation: contextual equivalence can be seen as the largest adequate and compatible relation (Lassen, 1998; Pitts, 2011). This requires extending Beluga to at least second-order quantification. This is work in progress, as it would be useful in many other scenarios, e g., normalization for system F.

Finally, we believe it would be interesting to explore other approaches to proving program equivalence such as step-indexed logical relations (Ahmed, 2006) and compare this approach with Howe’s. This would give us a deeper understanding of program equivalence proofs and provide insights into how both approaches scale to more complex programming languages such as in (Pitts, 2005; Crary and Harper, 2007).

References

Appendix A. Overview of Beluga Source Language

A Beluga signature consists of LF declarations, inductive and coinductive definitions, and programs. For each LF type family \(a \) we declare its LF kind together with the constants that allow us to form objects that inhabit the type family. We also support mutual LF definitions that we do not capture in our grammar below not to complicate matters further.

Signature Decl.

\[
\text{Signature Decl.} D ::= \text{LF}\ a : K \leftarrow \text{LF} = c_1 : A_1 | \ldots | c_k : A_k; \\
\quad \text{inductive} a : K = c_1 : T_1 | \ldots | c_n : T_n; \\
\quad \text{coinductive} a : K = (c_1 : T_1) :: T'_1 | \ldots | (c_n : T_n) :: T'_n; \\
\quad \text{rec} c : T = E;
\]

(\Co)inductive definitions correspond to (co)indexed recursive types and semantically are interpreted as (greatest) least fixed points. We define an indexed recursive type family by defining constructors \(c_i \) that can be used to construct its elements. We define a corecursive type by the observations we can make about it using indexed records, where we write the field \(c_i \) together with the type \(T_i \) from which we can project the result \(T'_i \).

Given a Beluga term of \(E \) type \(T_i \) we may use the projection \(c_i \) and the result of \(E.c_i \) is then of type \(T'_i \).

We describe Beluga’s type and terms more precisely in Fig. 13. The syntax for LF kinds, types and terms is close to the syntax \(\text{x} \) in the Twelf system. We write curly braces \(\{ _ \} \) for the dependent LF function space and allow users to write simply \(_ \rightarrow _ \) if there is no dependency. LF kinds, types, and LF terms used in a signature declaration must be pure, i.e. they cannot refer to closures highlighted in blue and written as \(X[\sigma] \) and \(\#p[\sigma] \). Here \(X \) and \(\#p \) are meta-variables that are bound and introduced in Beluga types and patterns.

\[
\begin{align*}
\text{LF Kinds} & \quad \mathcal{K}_{\text{LF}} ::= \text{type} | \{X:A\} \mathcal{K}_{\text{LF}} | A \rightarrow \mathcal{K}_{\text{LF}} \\
\text{LF Types} & \quad A ::= a | A_1 \ldots A_n | \{X:A\} A' | A \rightarrow A' \\
\text{LF Terms} & \quad M ::= x | \lambda x.M | c.M_1 \ldots M_n | X[\sigma] | \#p[\sigma] \\
\text{LF Subst.} & \quad \sigma ::= _ | \sigma.M \\
\text{LF Context} & \quad \psi, \Phi ::= _ | \psi | \psi.x:A \\
\text{Contextual Type} & \quad U ::= [\psi \vdash a | M_1 \ldots M_n | [\text{ctx}] | [\psi \vdash \Phi] | \ldots \\
\text{Contextual Object} & \quad C ::= [\psi \vdash M] | [\psi] | \ldots
\end{align*}
\]

Fig. 13. Grammar of Beluga
Substitutions in closures are either empty, written as ω here, or a weakening substitution σ, which we use in practice to transition from a context to a possible extension. Substitutions can also be built by extending a substitution σ with a LF term M.

LF contexts may be empty, consists of a context variable, or are built by concatenating to a LF context a LF variable declaration.

Contextual types and terms pair a LF context together with a LF type or LF term respectively. As LF contexts are first-class in Beluga, they form valid contextual objects. LF contexts are in general classified by a schema that allows us to state an invariant the LF context satisfies; here we only add the one schema we have used in this development (Section 3.7), namely ctx.

Beluga’s type language supports indexed dependent function space, $(\langle x:U \rangle)T$, non-dependent functions, embedding contextual types, and (co)inductive definitions, described as $C_1 \ldots C_n$. Note that in $(\langle x:U \rangle)T$ we make x explicit and hence any computation-level expression of that type expects first an object of type U. We also permit a limited form of implicit type annotation for context variables; by writing $(\langle x:\text{ctx} \rangle)T$ we can abstract over the context variable x and declare its context schema, while keeping x implicit.

Beluga’s computation language allows us to make statements about contextual types and objects and we highlight them in blue as well. It is in many ways similar to standard functional programming languages with two exceptions: first, contextual types and objects are the special domain and we support not only pattern matching, but also copattern matching, i.e., our patterns may include projections describing the observations that we can make about a given (output) type. In particular, we allow functions to be defined via (co)pattern matching using the fun keyword. Beluga also supports case analysis using pattern matching independently for convenience. Further, as in OCaml, we not only allow functions to be defined via (co)pattern matching, but to be formed by abstracting over their arguments. For example functions defined using mlam abstract over contextual variables occurring in the function body. Further, our language features let-expressions as a degenerate case of case analysis, together with applications, computation-level variables, constructors, constants, and projections. This is by no means a complete account of the computation language of Beluga— we have only described here the part relevant for our case study.