
Formalizing Program Equivalences
in Dependent Type Theory

a non-technical introduction

Alberto Momigliano
DI, Milano

joint work with Giorgio Marabelli

ICTCS, September 11, 2009, Como



Formalizing Math in a Proof Assistant

Do you believe in your proofs?

(I don’t, but I’m mathematically challenged)

Some theorems have proofs so complicated that they cannot be
inspected/understood by humans (the Four-Color Theorem, the
Kepler Conjecture).

Computed assisted (interactive) theorem proving (Proof
Assistants) have emerged as an answer to this problem and provide
formal, inspectable proofs with the highest guarantee of certainty:

The Four-Color Theorem, implemented by Werner and Gonthier in
Coq
The Kepler conjecture implemented as Flyspeck by Hayes at al.,
2013 in HOL4



Formalizing CS in a Proof Assistant

One angle for the use of PA in CS is the mechanized verification of
programming languages theory and artifacts:

Lambda/objects/process calculi.
static analyzers (e.g., type checkers), interpreters, compilers. . .

Meta-theoretic properties: type soundness, compiler correctness,
termination, program equivalence. . .

Those proofs do not require deep math, but, for realistic languages,
have so many cases that humans (read PhD students) cannot be
trusted. Or such proofs are simply not done in details.

One of many success stories of verified PL meta-theory:

CompCert (Leroy 2009, Coq): a fully verified compiler for most of C
(ISO C99), generating efficient code for the PowerPC, ARM, etc.



Equivalence of functional programs

Our model of pure higher-order functional programming is PCFL, a
λ-calculus with recursion over lazy lists:

Type τ ::= > | τ → τ | τ list
Exp m ::= x | λ x .m | m1 m2 | fix x . m | 〈〉 | nil | cons m1 m2

| lcase m of {nil⇒ mh | cons h t ⇒ mt}

lazy evaluation brings in an interesting notion of infinite
computation that we can observe

An example in concrete syntax: those two reverse functions are
(Kleene) equivalent:

l e t r e c s l o w r e v xs = l e t f r e v xs =
match xs w i t h l e t r e c aux xs acc =

[ ] −> [ ] match xs w i t h
| y : ys −> s l o w r e v ys @ [ y ] [ ] −> acc

| y : ys −> aux ys ( y : acc )
aux xs [ ]



Basic desiderata for representing PL theory in a PA

A shameless plug: see Krebbers, Pientka and myself’s entry
“Programming Languages” in the forthcoming Springer book “Proof
Assistants and their Applications in Mathematics and Computer
Science”, Blanchette and Mahboubi eds.

Representing binding syntax adequately

These two programs should be the same (α-equivalence):

let fst x y = x let fst y x = y

Good infrastructure for ubiquitous notions such as typing contexts,
environments, substitutions, renamings etc.

Support for defining (co)recursive functions over syntax and
(co)inductive definitions of judgments such as static/dynamic
semantics (SOS) etc.

both need to be compatible with the way we represent the syntax —
not obvious!



Approaches to syntax

Choosing the right way to represent syntax is paramount to a successful
verification effort. Lots to choose from:

Raw terms and variables as strings: inadequate and hellish (still
people — Leroy, not to name names — use it all the time)

de Bruijn terms: variables are pointers to their binding site:

the standard for meta-programming, but difficult to read and a lot of
external machinery for reasoning about it

Nominal logic: consider terms modulo equivariance (i.e.,
permutations of names):

very trendy, but not well supported by PAs (just the encoding on top
of Isabelle/HOL, so it’s classical logic)

Higher-order abstract syntax: object level binders mapped to the
binder of the meta-logic:

the best (AFAIK), but not consistent with standard PA



PA: what to choose?

A specialized framework based HOAS syntax and geared towards
PL-theory: Twelf/Abella/Beluga

Pros: great support for binding syntax and related abstractions;
Cons: few libraries, little automation, no current support for higher-order

logic.

A full-fledged, general purpose PA, say Coq — the de facto standard
(like it or not) — building on appropriate libraries for PL meta-theory

When studying the meta-theory of program equivalences in higher-order
functional programming, we may need more:



PA: what to choose?

A specialized framework based HOAS syntax and geared towards
PL-theory: Twelf/Abella/Beluga

Pros: great support for binding syntax and related abstractions;
Cons: few libraries, little automation, no current support for higher-order

logic.

A full-fledged, general purpose PA, say Coq — the de facto standard
(like it or not) — building on appropriate libraries for PL meta-theory

When studying the meta-theory of program equivalences in higher-order
functional programming, we may need more:



PA: what to choose?

A specialized framework based HOAS syntax and geared towards
PL-theory: Twelf/Abella/Beluga

Pros: great support for binding syntax and related abstractions;
Cons: few libraries, little automation, no current support for higher-order

logic.

A full-fledged, general purpose PA, say Coq — the de facto standard
(like it or not) — building on appropriate libraries for PL meta-theory

When studying the meta-theory of program equivalences in higher-order
functional programming, we may need more:



More desiderata

All relations of interest concern well-typed terms and we’d like to
preserve that invariance automatically (intrinsic typing).

⇒ Via Coq’s dependent types, we can define object terms to depend on
object types, so that ill-typed terms cannot even be represented.
We use well-typed, well-scoped De Bruijn terms (simple
modification of the existing Coq theory by Benton at al. (2007)

A meta-logic general enough to deal with relations as first class
citizen:

⇒ comes for free from Coq’s higher-order logic and from its type
classes mechanism.

Sophisticated coinductive reasoning — vanilla guarded induction
not enough

⇒ the PACO (parameterized coinduction) library by Hur et al. (2013)
— basically, reasoning directly via greatest fixed points.

So, Coq it is.



What is a program equivalence?

Two program expressions (or components if not stand-alone) are
semantically equivalent if we cannot tell them apart.

We do that by running experiments and observe their behavior.

We identify an experiment with a context C, that is a PCFL
expression with a hole (a logical variable)

component passes a test if when plugged into a context, the
resulting whole program converges to an (observable) value:

M ≡ctx N iff ∀C∀V , C[M] ⇓ V ↔ C[N] ⇓ V

What do we mean by observable?

Ground We observe convergence only at ground values
Applicative We observe it at every type (functions are values)

The former is coarser than the latter.



Why does contextual equivalence matter?

Compiler optimization, and more in general compiler full abstraction

interchangeability of abstract data types, even . . .

. . . security properties (e.g., confidentiality of a variable or more in
general non-interference) can be expressed in terms of contextual
equivalence:

⇒ An attacker can be seen as a context

. . . , see the annual “Workshop on Program Equivalence and
Relational Reasoning”



Properties of contextual equivalence

Easy to show that it is a congruence, that is an equivalence relation
that it is also compatible, i.e., it respects the constructors of the
object language — this enables equational reasoning, good.

Yet, the quantification on every context makes it hard to use in
practice. The more for low-level languages where the notion of
context is not inductive.

Thus, we have to consider other forms of equivalences, provided we
can prove them to coincide with ctx equivalence.

One such from concurrency theory is bisimilarity.



On bisimilarity

Roughly, two functions are bisimilar if they take equal arguments to
bisimilar results.
m ≈σ⊃σ′ n iff whenever m ⇓ λ x . p for any p, there exists a q such
that n ⇓ λ y . q and for every r :σ, p[r/x ] 4σ′ q[r/y ] and vice versa.

In presence of non-termination, bisimilarity is defined coinductively
to break the circularity. Hence we can use a coinduction to establish
two programs equivalent.

The definition is not by quantification on contexts, but type-driven.

Great, but we still need to:
1 Show that it is a congruence
2 Show that it coincides with ctx equivalence.

1. We do this using Howe’s technique: introduce yet another relation
(the candidate relation), which is easy to see is a congruence and
show it coincides with bisimilarity.



Bisimilarity is context equivalence

The notion of context is “unpleasantly concrete” for formalizations
(Pitts):

Ctx C ::= ◦ | λ x . C | C1 m | m C2 | . . .

Filling a hole in a context does not respect α-equivalence.
Let C = λx . ◦. Then C{x} = λx . x 6= C{y} = λx . y

An alternative “context-less” definition of contextual equivalence:
the largest compatible and adequate (that is respecting
convergence) relation on well-typed terms (Gordon, 1995).

This definition make essential use of Coq’s impredicativity

The proof that “context-less” contextual equivalence is a
bisimulation is where Coq’s native support for coinduction breaks
down and where we use PACO.



Formal Results

We have formally defined and verified:

A general theory of dependent relations, to be instantiated with
open and closed terms.

That ground and applicative bisimilarity are congruences.

The coincidence of the concrete and the context-less representation
of contextual equivalence.

The coincidence of applicative/ground bisimilarity with
applicative/ground contextual equivalence.

Around 110 theorems and 70 definitions for circa 2300 lines of code
including sparse comments



Conclusions and Future work

In conclusion:

Though both authors being Coq novices, we managed to push the
state of the art a little further closing the circle between various
forms and encodings of bisimilarity and contextual equivalence.

The general setup of dependent relations is promising.

What’s next:

Extending the results to a language with arbitrary recursive types:

idea: same object types, but view them coinductively (infinite trees)

Tackle more challenging equivalences such as probabilistic context
equivalence

For this we need some expertise with constructive real numbers



Conclusions and Future work

In conclusion:

Though both authors being Coq novices, we managed to push the
state of the art a little further closing the circle between various
forms and encodings of bisimilarity and contextual equivalence.

The general setup of dependent relations is promising.

What’s next:

Extending the results to a language with arbitrary recursive types:

idea: same object types, but view them coinductively (infinite trees)

Tackle more challenging equivalences such as probabilistic context
equivalence

For this we need some expertise with constructive real numbers



That’s all, folks

Thanks!


